matlab练习程序(螺线拟合)

这里待拟合的螺线我们选择阿基米德螺线,对数螺线类似。
螺线的笛卡尔坐标系方程为:
 
螺线从笛卡尔坐标转为极坐标方程为:
 
阿基米德螺线在极坐标系下极径r和极角theta为线性关系,方程为:
 
计算步骤如下:
1.通常我们首先得到螺线在笛卡尔坐标下的一些点x,y。
2.然后根据x,y计算出r和theta。
3.最后拟合的目标就是计算出a和b,这一步可以用最小二乘。
 
拟合结果:
下图蓝色线为原始线(这里可能看不到),红色线为拟合线,红色点为测量点。
放大看一下:
不过有时候拟合也会失败(这时候就可以祭出ransac大法了):
matlab代码如下:
clear all;
close all;
clc;

%%生成阿基米德螺线
a=6.34;
b=4.23;
theta=0:0.01:5*pi;
r = a+b*theta;

x = r.*cos(theta);
y = r.*sin(theta);
plot(x,y,'b')

%%生成待拟合数据
ind = randperm(length(x),50);
dat=[x(ind)' y(ind)'] + rand(50,2)/5;
hold on;
plot(dat(:,1),dat(:,2),'r.');

T = atan(dat(:,2)./dat(:,1));
R = sqrt(dat(:,1).^2+dat(:,2).^2);

%%因为T是周期为pi循环数列,因此需要根据不同圈数加pi
D=[R T];
D=sortrows(D);
E=D;
n = 0;
for i=2:length(D)
    if D(i,2)-D(i-1,2)<0 && D(i,2)<0
       n=n+1;
    end
    E(i,2) = E(i,2) + n*pi;   
end

X = [E(:,2) ones(length(dat),1)];
Y = E(:,1);
C = inv(X'*X)*X'*Y;     

theta=0:0.01:5*pi;
r = C(2)+C(1)*theta;
x = r.*cos(theta);
y = r.*sin(theta);
plot(x,y,'r')


%%生成对数螺线
a=1.34;
b=2.23;
theta=0:0.01:5*pi;
r = a*exp(b*theta/10);

x = r.*cos(theta);
y = r.*sin(theta);
figure;
plot(x,y)

ind = randperm(length(x),50);
dat=[x(ind)' y(ind)'] + rand(50,2)/5;
hold on;
plot(dat(:,1),dat(:,2),'r.');

最后还生成了对数螺线,大家可以自行尝试拟合一下哈。

posted @ 2019-11-30 15:48  Dsp Tian  阅读(2929)  评论(0编辑  收藏  举报