matlab练习程序(倾斜校正,透视变换)

  过去也写过透视变换,当时算法真是弱爆了,我竟然会通过两次变换。不过那引用的三篇文章都是非常好的文章,直到今天我才看明白。所谓的倾斜校正,一定要有标定点,将一个倾斜的矩形变为不倾斜的。因此可以从原四边形四个点和新矩形四个点得到一个变换矩阵,根据这个矩阵再作用到全局图像就可以了。详细原理在这里,MIT的,我也不会比他介绍的更好了,还是看原版的好。

  我这里的代码完全就是按照MIT那篇文章的原理实现的,不过因为Matlab细节的原因,我把公式中x和y位置互换了:

clear all;
close all;
clc;

img= imread('rect.bmp');
img= rgb2gray(img);
imshow(mat2gray(img));
[M N] = size(img);

dot=ginput();       %取四个点,依次是左上,右上,左下,右下,这里我取的是书的四个角
w=round(sqrt((dot(1,1)-dot(2,1))^2+(dot(1,2)-dot(2,2))^2));     %从原四边形获得新矩形宽
h=round(sqrt((dot(1,1)-dot(3,1))^2+(dot(1,2)-dot(3,2))^2));     %从原四边形获得新矩形高

y=[dot(1,1) dot(2,1) dot(3,1) dot(4,1)];        %四个原顶点
x=[dot(1,2) dot(2,2) dot(3,2) dot(4,2)];

%这里是新的顶点,我取的矩形,也可以做成其他的形状
%大可以原图像是矩形,新图像是从dot中取得的点组成的任意四边形.:)
Y=[dot(1,1) dot(1,1) dot(1,1)+h dot(1,1)+h];     
X=[dot(1,2) dot(1,2)+w dot(1,2) dot(1,2)+w];

B=[X(1) Y(1) X(2) Y(2) X(3) Y(3) X(4) Y(4)]';   %变换后的四个顶点,方程右边的值
%联立解方程组,方程的系数
A=[x(1) y(1) 1 0 0 0 -X(1)*x(1) -X(1)*y(1);             
   0 0 0 x(1) y(1) 1 -Y(1)*x(1) -Y(1)*y(1);
   x(2) y(2) 1 0 0 0 -X(2)*x(2) -X(2)*y(2);
   0 0 0 x(2) y(2) 1 -Y(2)*x(2) -Y(2)*y(2);
   x(3) y(3) 1 0 0 0 -X(3)*x(3) -X(3)*y(3);
   0 0 0 x(3) y(3) 1 -Y(3)*x(3) -Y(3)*y(3);
   x(4) y(4) 1 0 0 0 -X(4)*x(4) -X(4)*y(4);
   0 0 0 x(4) y(4) 1 -Y(4)*x(4) -Y(4)*y(4)];

fa=inv(A)*B;        %用四点求得的方程的解,也是全局变换系数
a=fa(1);b=fa(2);c=fa(3);
d=fa(4);e=fa(5);f=fa(6);
g=fa(7);h=fa(8);

rot=[d e f;
     a b c;
     g h 1];        %公式中第一个数是x,Matlab第一个表示y,所以我矩阵1,2行互换了

pix1=rot*[1 1 1]'/(g*1+h*1+1);  %变换后图像左上点
pix2=rot*[1 N 1]'/(g*1+h*N+1);  %变换后图像右上点
pix3=rot*[M 1 1]'/(g*M+h*1+1);  %变换后图像左下点
pix4=rot*[M N 1]'/(g*M+h*N+1);  %变换后图像右下点

height=round(max([pix1(1) pix2(1) pix3(1) pix4(1)])-min([pix1(1) pix2(1) pix3(1) pix4(1)]));     %变换后图像的高度
width=round(max([pix1(2) pix2(2) pix3(2) pix4(2)])-min([pix1(2) pix2(2) pix3(2) pix4(2)]));      %变换后图像的宽度
imgn=zeros(height,width);

delta_y=round(abs(min([pix1(1) pix2(1) pix3(1) pix4(1)])));            %取得y方向的负轴超出的偏移量
delta_x=round(abs(min([pix1(2) pix2(2) pix3(2) pix4(2)])));            %取得x方向的负轴超出的偏移量
inv_rot=inv(rot);

for i = 1-delta_y:height-delta_y                        %从变换图像中反向寻找原图像的点,以免出现空洞,和旋转放大原理一样
    for j = 1-delta_x:width-delta_x
        pix=inv_rot*[i j 1]';       %求原图像中坐标,因为[YW XW W]=fa*[y x 1],所以这里求的是[YW XW W],W=gy+hx+1;
        pix=inv([g*pix(1)-1 h*pix(1);g*pix(2) h*pix(2)-1])*[-pix(1) -pix(2)]'; %相当于解[pix(1)*(gy+hx+1) pix(2)*(gy+hx+1)]=[y x],这样一个方程,求y和x,最后pix=[y x];
        
        if pix(1)>=0.5 && pix(2)>=0.5 && pix(1)<=M && pix(2)<=N
            imgn(i+delta_y,j+delta_x)=img(round(pix(1)),round(pix(2)));     %最邻近插值,也可以用双线性或双立方插值
        end  
    end
end

figure;
imshow(uint8(imgn));

程序效果:

原图,这是本不错的书

倾斜校正后

将来说不定结合sift算子和霍夫变换就能自动校正呢。

注:博客园有Bug,当你点代码左下角复制代码的时候,矩阵A的2,4,6,8行第一列会少复制一个0.

另一篇关于投影的文章见这里

posted @ 2012-12-16 21:38  Dsp Tian  阅读(45473)  评论(51编辑  收藏  举报