动态规划 最短路径和
Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.
Note: You can only move either down or right at any point in time.
Example:
Input: [ [1,3,1], [1,5,1], [4,2,1] ] Output: 7 Explanation: Because the path 1→3→1→1→1 minimizes the sum.
这类求最短最长的问题,实际的操作做法大多数都是定义一个数组,数组的下标代表对应问题,其值代表这种情况下的最优解最优解,然后答案的最优解就是对应下标数组的值。这里我们也创建一个二维数组dp[][],dp[i][j]代表从dp[0][0]
走到dp[i][j]的最短路径和。
dp[i][j] = Math.min(dp[i-1][j],dp[i][j-1])+grid[i][j];
public class MinPathSum{ public int minPathSum(int grid[][]){ final int m = grid.length; final int n = grid[0].length; int[][] dp = new int[m+1][n+1]; dp[0][0] = grid[0][0]; for(int i = 1; i < m; i++) dp[i][0] = dp[i-1][0] + grid[i][0]; for(int j = 1; j < n; j++) dp[0][j] = dp[0][j-1] + grid[0][j]; for(int i = 1; i < m; i++){ for(int j = 1; j < n;j++) dp[i][j] = Math.min(dp[i-1][j],dp[i][j-1])+grid[i][j]; return dp[m-1][n-1]; } }