python时间监测工具line_profiler

时间监测工具line_profiler

ine_profiler是Python的一个第三方库,其功能时基于函数的逐行代码分析工具。通过该库,可以对目标函数允许分析多个函数)进行时间消耗分析,便于代码调优。

安装

pip install line_profiler

部分注释

Timer unit: 1e-07 s

Total time: 7.13e-05 s
File: d:\Note\lcodeNoteCards\testcode\python\testpy.py
Function: do_stuff at line 4

Line #      Hits         Time  Per Hit   % Time  Line Contents
==============================================================
     4                                           def do_stuff(numbers):
     5         1         24.0     24.0      3.4      s = sum(numbers)
     6         1        249.0    249.0     34.9      l = [numbers[i]/43 for i in range(len(numbers))]
     7         1        437.0    437.0     61.3      m = ['hello'+str(numbers[i]) for i in range(len(numbers))]
     8         1          3.0      3.0      0.4      return s, l, m
Timer unit:分析表中,Time和Per Hit的数值单位,时间单位固定为秒(s),默认数值单位是1e-6,合在一起便是1e-6s,即微秒。实际某一行的运行时间是Time * Timer unit的值,觉得不好理解的话,下方介绍kernprof命令时有一个示例供各位同学理解,这里只是简单提一下。
Total time:当前函数的时间消耗,单位是秒。
File:当前函数所在文件名。
Function:当前函数的函数名以及在文件中的位置。
Line #:代码所在行号。
Hits:在执行过程中,该行代码执行次数,即命中数。
Time:在执行过程中,该行代码执行的总时间,默认单位是微秒。
Per Hit:在执行过程中,平均每次执行该行代码所耗时间,默认单位是微秒。
% Time:执行该行代码所耗总时间占执行当前函数所耗总时间的百分比。
Line Contents:该行代码的内容。

使用方法

# line_profiler_test.py
from line_profiler import LineProfiler
import numpy as np
 
@profile
def test_profiler():
    for i in range(100):
        a = np.random.randn(100)
        b = np.random.randn(1000)
        c = np.random.randn(10000)
    return None
 
if __name__ == '__main__':
    test_profiler()
    
kernprof -v -l  "d:\Note\lcodeNoteCards\testcode\python\testpy.py" 

Wrote profile results to testpy.py.lprof
Timer unit: 1e-06 s

Total time: 0.0209844 s
File: d:\Note\lcodeNoteCards\testcode\python\testpy.py
Function: test_profiler at line 5

Line #      Hits         Time  Per Hit   % Time  Line Contents
==============================================================
     5                                           @profile
     6                                           def test_profiler():
     7       101         25.8      0.3      0.1      for i in range(100):
     8       100        362.6      3.6      1.7          a = np.random.randn(100)
     9       100       1998.9     20.0      9.5          b = np.random.randn(1000)
    10       100      18596.8    186.0     88.6          c = np.random.randn(10000)
    11         1          0.3      0.3      0.0      return None

同时显示内部函数

from line_profiler import LineProfiler
import random
 
def do_other_stuff(numbers):
    s = sum(numbers)
 
def do_stuff(numbers):
    do_other_stuff(numbers)
    l = [numbers[i]/43 for i in range(len(numbers))]
    m = ['hello'+str(numbers[i]) for i in range(len(numbers))]
 
numbers = [random.randint(1,100) for i in range(1000)]
lp = LineProfiler()
lp.add_function(do_other_stuff)   # add additional function to profile
lp_wrapper = lp(do_stuff)
lp_wrapper(numbers)
lp.print_stats()
Timer unit: 1e-07 s

Total time: 7e-06 s
File: d:\Note\lcodeNoteCards\testcode\python\testpy.py
Function: do_other_stuff at line 4

Line #      Hits         Time  Per Hit   % Time  Line Contents
==============================================================
     4                                           def do_other_stuff(numbers):
     5         1         70.0     70.0    100.0      s = sum(numbers)

Total time: 0.0006311 s
File: d:\Note\lcodeNoteCards\testcode\python\testpy.py
Function: do_stuff at line 7

Line #      Hits         Time  Per Hit   % Time  Line Contents
==============================================================
     7                                           def do_stuff(numbers):
     8         1        104.0    104.0      1.6      do_other_stuff(numbers)
     9         1       2064.0   2064.0     32.7      l = [numbers[i]/43 for i in range(len(numbers))]
    10         1       4143.0   4143.0     65.6      m = ['hello'+str(numbers[i]) for i in range(len(numbers))]

参考资料

https://blog.csdn.net/weixin_42245157/article/details/125415104

posted @ 2023-10-24 20:12  贝壳里的星海  阅读(373)  评论(0编辑  收藏  举报