pandas-重新索引

pandas-重新索引

reindex()

DataFrame.reindex(self, labels=None, index=None, columns=None, axis=None, method=None, copy=True, level=None, fill_value=nan, limit=None, tolerance=None)

支持两种调用
- (index=index_labels, columns=column_labels, ...)
- (labels, axis={'index', 'columns'}, ...)

创建一个新索引并重新索引该数据框。默认情况下,将分配新索引中在数据框中没有对应记录的值NaN

import pandas as pd
import numpy as np
N=6
df = pd.DataFrame({'A': pd.date_range(start='2023-01-01',periods=N,freq='D'),
                   'x': np.linspace(0,stop=N-1,num=N),
                   'y': np.random.rand(N),
                   'C': np.random.choice(['Low','Medium','High'],N).tolist(),
                   'D': np.random.normal(100, 10, size=(N)).tolist()
                  })

print(df)

#           A    x         y       C           D
#0 2023-01-01  0.0  0.925854    High  104.851562
#1 2023-01-02  1.0  0.103372     Low  100.870139
#2 2023-01-03  2.0  0.667730  Medium   96.781621
#3 2023-01-04  3.0  0.149160  Medium   98.100630
#4 2023-01-05  4.0  0.606853    High   87.979547
#5 2023-01-06  5.0  0.450098     Low  104.103565

# DataFrame重建索引
df_reindexed = df.reindex(index=[0,2,5], columns=['A', 'C', 'B'])
print(df_reindexed)


#           A       C   B
#0 2023-01-01    High NaN
#2 2023-01-03  Medium NaN
#5 2023-01-06     Low NaN

通过将值传递给关键字来填充缺少的值fill_value

import pandas as pd
import numpy as np
index = ['Firefox', 'Chrome', 'Safari', 'IE10', 'Konqueror']
df = pd.DataFrame({'http_status': [200, 200, 404, 404, 301],
                   'response_time': [0.04, 0.02, 0.07, 0.08, 1.0]},
                   index=index)
print(df)
#           http_status  response_time
#Firefox            200           0.04
#Chrome             200           0.02
#Safari             404           0.07
#IE10               404           0.08
#Konqueror          301           1.00

new_index = ['Safari', 'Iceweasel', 'QQ', 'IE10','Chrome']
df1=df.reindex(index=new_index,fill_value='missing')
print( df1)


#          http_status response_time
#Safari            404          0.07
#Iceweasel     missing       missing
#QQ            missing       missing
#IE10              404          0.08
#Chrome            200          0.02

set_index( )

重新设置一个索引

DataFrame.set_index(keys, drop=True, append=False, inplace=False, verify_integrity=False)
keys:列标签或列标签/数组列表,需要设置为索引的列

drop:默认为True,删除用作新索引的列

append:是否将列追加到现有索引,默认为False。

inplace:输入布尔值,表示当前操作是否对原数据生效,默认为False。

verify_integrity:检查新索引的副本。否则,请将检查推迟到必要时进行。将其设置为false将提高该方法的性能,默认为false。
import pandas as pd
import numpy as np

df = pd.DataFrame({'month': [1, 4, 7, 10],
                    'year': [2012, 2014, 2013, 2014],
                    'sale': [55, 40, 84, 31]})
print(df)
#   month  year  sale
#0      1  2012    55
#1      4  2014    40
#2      7  2013    84
#3     10  2014    31

df1=df.set_index('month')
print(df1)

#       year  sale
#month
#1      2012    55
#4      2014    40
#7      2013    84
#10     2014    31
# 使用‘year’和‘month’列创建一个MultiIndex:

df2=df.set_index(['year', 'month'])
print(df2)

            sale
year month
2012 1        55
2014 4        40
2013 7        84
2014 10       31

reset_index()

创建一个新的 DataFrame,并将索引列作为新的一列添加到 DataFrame 中

DataFrame.reset_index(level=None, drop=False, inplace=False, col_level=0, col_fill='')
import pandas as pd
import numpy as np

df = pd.DataFrame([('bird', 389.0),
                   ('bird', 24.0),
                   ('mammal', 80.5),
                   ('mammal', np.nan)],
                  index=['falcon', 'parrot', 'lion', 'monkey'],
                  columns=('class', 'max_speed'))
 
print(df)
#         class  max_speed
#falcon    bird      389.0
#parrot    bird       24.0
#lion    mammal       80.5
#monkey  mammal        NaN

print(df)
df1=df.reset_index()
print(df1)


#    index   class  max_speed
#0  falcon    bird      389.0
#1  parrot    bird       24.0
#2    lion  mammal       80.5
#3  monkey  mammal        NaN


# 可以使用drop参数来避免将旧索引添加为列
df2=df.reset_index(drop=True)
print(df2)

#    class  max_speed
#0    bird      389.0
#1    bird       24.0
#2  mammal       80.5
#3  mammal        NaN

参考资料

https://www.cjavapy.com/article/701/

https://www.cjavapy.com/article/701/

posted @ 2023-09-01 23:03  贝壳里的星海  阅读(159)  评论(0编辑  收藏  举报