numpy-选择和过滤
numpy-选择和过滤
查找
np,where()
1、不带条件
返回tuple,第一个值是索引,第二个是空值
输入必须是 数组,不能是 list
输入一般是一维,行向量或者列向量都可以
2、带条件
np.where(condition, x, y)
满足条件(condition
),输出x
,不满足输出y
。
import numpy as np
x = np.arange(9.).reshape(3, 3)
print ('原数组:')
print (x)
print ( '大于 3 的元素的索引:')
y = np.where(x > 3)
print (y)
print ('获取选择后的元素:')
print (x[y])
# 执行结果===========================
原数组:
[[0. 1. 2.]
[3. 4. 5.]
[6. 7. 8.]]
大于 3 的元素的索引:
(array([1, 1, 2, 2, 2], dtype=int64), array([1, 2, 0, 1, 2], dtype=int64))
获取选择后的元素:
[4. 5. 6. 7. 8.]
import numpy as np
x = np.arange(9.).reshape(3, 3)
a=np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
print(np.where(a < 5, a, 10*a))
[ 0 1 2 3 4 50 60 70 80 90]
np.extract()
where函数有一点相,不过extract函数是返回满足条件的元素
import numpy as np
aa = np.arange(10)
print(np.extract(aa>8,aa))
# [9]
比较
比较是过滤的前提,因为通过比较才能确定过滤的条件。
数组和单个数字
import numpy as np
arr = np.random.randint(0, 10, (3, 3))
print(arr)
#运行结果
[[4 1 4]
[7 6 1]
[8 9 5]]
print(arr > 5)
#运行结果
[[False False False]
[ True True False]
[ True True False]]
数组和单个数字比较,也满足上一篇介绍的广播原则,也就是数组arr
的每个元素都和数字5
进行了比较。
比较的结果是和arr
相同结构的数组,数组中的元素是bool
值。 满足比较条件是True
,不满足比较条件的是False
。
数组和数组
除了和单个数字比较之外,数组之间也是可以比较的。
arr1 = np.random.randint(0, 10, (3, 3))
print(arr1)
#运行结果
[[9 7 3]
[2 8 5]
[2 2 3]]
arr2 = np.random.randint(0, 10, (3, 3))
print(arr2)
#运行结果
[[1 6 0]
[0 1 8]
[9 0 5]]
print(arr1 > arr2)
#运行结果
[[ True True True]
[ True True False]
[False True False]]
数组之间的比较就是相同位置的元素之间比较,如果两个数组的结构不一样,会按照上一篇介绍的广播计算方式来扩充数组。 比如:
arr1 = np.random.randint(0, 10, (3, 3))
print(arr1)
#运行结果
[[9 6 0]
[1 4 9]
[1 1 4]]
arr2 = np.random.randint(0, 10, (3, 1))
print(arr2)
#运行结果
[[1]
[0]
[9]]
print(arr1 > arr2)
#运行结果
[[ True True False]
[ True True True]
[False False False]]
过滤
过滤就是根据掩码,选择出符合条件的元素。
所谓掩码就是相同维度的.布尔型数据
[[ True True False]
[ True True True]
[False False False]]
单条件过滤
arr = np.random.randint(0, 10, (3, 3))
print(arr)
#运行结果
[[8 4 0]
[2 2 9]
[9 5 9]]
print(arr[arr > 5])
#运行结果
[8 9 9 9]
最后得到的是arr
中值大于5
的元素数组。 其中 arr > 5
的结果就是上一节提到的掩码,最后过滤出的元素就是根据这个掩码得到的。
arr1 = np.random.randint(0, 10, (3, 3))
print(arr1)
#运行结果
[[3 4 7]
[4 6 2]
[7 2 1]]
arr2 = np.random.randint(0, 10, (3, 3))
print(arr2)
#运行结果
[[2 3 1]
[7 7 7]
[1 6 4]]
print(arr1[arr1 > arr2])
#运行结果
[3 4 7 7]
多条件过滤
多条件过滤使用 &
和 |
来连接不同的条件。
arr1 = np.random.randint(0, 10, (3, 3))
print(arr1)
#运行结果
[[1 0 5]
[7 4 9]
[8 5 4]]
arr2 = np.random.randint(0, 10, (3, 3))
print(arr2)
#运行结果
[[6 4 1]
[0 1 1]
[8 5 8]]
print(arr1[(arr1 > 5) & (arr1 > arr2)])
#运行结果
[7 9]
过滤arr1
中大于5
** 并且 **对应位置比arr2
大的元素。
arr1 = np.random.randint(0, 10, (3, 3))
print(arr1)
#运行结果
[[1 0 5]
[7 4 9]
[8 5 4]]
arr2 = np.random.randint(0, 10, (3, 3))
print(arr2)
#运行结果
[[6 4 1]
[0 1 1]
[8 5 8]]
print(arr1[(arr1 > 5) | (arr1 > arr2)])
#运行结果
[5 7 4 9 8]
过滤arr1
中大于5
或者对应位置比arr2
大的元素。