LeetCode通关:连刷十四题,回溯算法完全攻略

刷题路线:https://github.com/youngyangyang04/leetcode-master

大家好,我是被算法题虐到泪流满面的老三,只能靠发发文章给自己打气!

这一节,我们来看看回溯算法。

回溯算法

回溯算法理论基础

什么是回溯

在二叉树的路径问题里,其实我们已经接触到了回溯这种算法。

例如我们在查找二叉树所有路径的时候,查找完一个路径之后,还需要回退,接着找下一个路径。

二叉树所有路径

回溯其实可以说是我们熟悉的DFS,本质上是一种暴力穷举算法,把所有的可能都列举出来,所以回溯并不高效。

这个可能比较抽象,我们举一个例子吧,[1,2,3]三个数可以构成多少种组合呢?

我们的办法就是把所有结果都穷举出来,那怎么穷举呢?可以第一位选1,第二位从[2,3]里选2,第三位从[3]里选3;第二个组合可以第一位选2……

我们把这个选择抽象成一棵树,初步有个印象,这是全排列的问题,后面会刷到。

抽象树

回溯算法模板

回溯算法,可以看作一个树的遍历过程,建议可以去看一下N叉树的遍历,和这个非常类似。

递归有三要素,类似的,回溯同样需要关注三要素:

  • 返回值和参数

回溯算法中函数返回值一般为void。

回溯方法的参数得结合实际问题,但是一般需要一个类似栈的结构来存储每个路径(结果),因为我们一次递归结束之后,节点要回溯到上一个位置。

回溯方法伪代码如下:

void backtrack(参数)
  • 回溯函数终止条件

和递归一样,回溯同样也要有结束条件。

什么时候达到了终止条件,从树的角度来讲,一般来说搜到叶子节点了,对回溯而言,就是找到了满足条件的一个结果。

所以回溯函数终止条件伪代码如下:

if (终止条件) {
    存放结果;
    return;
}
  • 回溯搜索的遍历过程

回溯法一般是在一个序列里做选择,序列的大小构成了树的宽度,递归的深度构成的树的深度。

回溯函数遍历过程伪代码如下:

for (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)) {
    处理节点;
    backtracking(路径,选择列表); // 递归
    回溯,撤销处理结果
}

for循环就是遍历序列,可以理解一个节点有多少个孩子,这个for循环就执行多少次。可以理解为横向的遍历。

backtrack就是自己调用自己,可以理解为纵向的遍历。

回溯算法模板

同时递归之后,我们还要撤销之前做的选择。

所以回溯算法模板框架如下:

void backtrack(参数) {
    if (终止条件) {
        存放结果;
        return;
    }

    for (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)) {
        处理节点;
        backtrack(路径,选择列表); // 递归
        回溯,撤销处理结果
    }
}

回溯能解决哪些问题

回溯法,一般可以解决如下几种问题:

  • 组合问题:N个数里面按一定规则找出k个数的集合
  • 切割问题:一个字符串按一定规则有几种切割方式
  • 子集问题:一个N个数的集合里有多少符合条件的子集
  • 排列问题:N个数按一定规则全排列,有几种排列方式
  • 棋盘问题:N皇后,解数独等等

可能到这对回溯还比较迷茫,没有关系,回溯是比较套路化的一种算法,多做几道题就明白了。

组合问题

LeetCode77. 组合

☕ 题目:77. 组合 (https://leetcode-cn.com/problems/combinations/)

❓ 难度:中等

📕 描述:

给定两个整数 nk,返回范围 [1, n] 中所有可能的 k 个数的组合你可以按 任何顺序 返回答案。

示例 1:

输入:n = 4, k = 2
输出:
[
  [2,4],
  [3,4],
  [2,3],
  [1,2],
  [1,3],
  [1,4],
]

示例 2:

输入:n = 1, k = 1
输出:[[1]]

💡 思路:

这道题是回溯算法的经典题目。

我们来看一下这道题的抽象树形结构:

组合抽象树结构

按照我们的回溯模板,看看这道题应该怎么写:

  • 返回值、参数

首先方法里是一定要区间的数据,[start,n]。

计数的k也不可缺少。

最后的结果集合result,还有每条路径的结果path,可以定义全局变量,来提升可读性。

  • 终止条件

什么时候终止,就是什么时候到叶子节点了呢?结果parh的大小等于k,说明到了叶子节点,一次递归结束。

  • 单层逻辑

在单层逻辑里面,我们要做两件事:

  1. 遍历序列
  2. 递归,遍历节点

组合单层逻辑

🖊 代码:

class Solution {
    //结果集合
    List<List<Integer>> result;
    //符合条件的结果
    LinkedList<Integer> path;

    public List<List<Integer>> combine(int n, int k) {
        result = new ArrayList<>();
        path = new LinkedList<>();
        backstack(n, k, 1);
        return result;
    }

    //回溯
    public void backstack(int n, int k, int start) {
        //结束条件
        if (path.size() == k) {
            result.add(new LinkedList<>(path));
            return;
        }
        for (int i = start; i <= n; i++) {
            path.addLast(i);
            //递归
            backstack(n, k, i + 1);
            //回溯,撤销已经处理的节点
            path.removeLast();
        }
    }
}

⚡ 剪枝优化

回溯中,提高性能的一大妙招就是剪枝。

剪枝见名知义,就是在把我们的树的一些树枝给它剪掉。

例如n = 4,k = 4

剪枝优化

我们可以看到,有些路径,其实一定是不满足我们的要求,如果我们把这些不可能的路径剪断,那我们不就可以少遍历一些节点吗?

所以我们看看这道题怎么来剪这个枝:

如果for循环选择的起始位置之后的元素个数 已经不足 我们需要的元素个数了,那么就没有必要搜索

  1. 已经选择的元素个数:path.size();
  2. 还需要的元素个数为: k - path.size();
  3. 所以起始位置 : n - (k - path.size()) + 1之后的肯定不符合要求

所以优化之后的代码如下:

class Solution{
      //结果集合
    List<List<Integer>> result;
    //符合条件的结果
    LinkedList<Integer> path;

    public List<List<Integer>> combine(int n, int k) {
        result = new ArrayList<>();
        path = new LinkedList<>();
        backstack(n, k, 1);
        return result;
    }

    //回溯
    public void backstack(int n, int k, int start) {
        //结束条件
        if (path.size() == k) {
            result.add(new LinkedList<>(path));
            return;
        }
        for (int i = start; i <= n-(k-path.size())+1; i++) {
            path.addLast(i);
            //递归
            backstack(n, k, i + 1);
            //回溯,撤销已经处理的节点
            path.removeLast();
        }
    }
}

LeetCode216. 组合总和 III

☕ 题目:77. 组合 (https://leetcode-cn.com/problems/combinations/)

❓ 难度:中等

📕 描述:

找出所有相加之和为 n 的 k 个数的组合。组合中只允许含有 1 - 9 的正整数,并且每种组合中不存在重复的数字。

说明:

  • 所有数字都是正整数。
  • 解集不能包含重复的组合。

示例 1:

输入: k = 3, n = 7
输出: [[1,2,4]]

示例 2:

输入: k = 3, n = 9
输出: [[1,2,6], [1,3,5], [2,3,4]]

💡 思路:

我们先把这道题抽象成树:

抽象树

接着套模板。

  • 终止条件

到叶子节点(path大小等于k)终止。

  • 返回值,参数

参数稍微有变化,序列是固定的,这里的n是目标和;需要一个参数pathSum来记录路径上的数总和,我们直接全局变量。

  • 单层逻辑

逻辑差别不大,回溯的时候需要把pathSum也回溯一下。

🖊 代码:

class Solution {
   //结果集合
    List<List<Integer>> result;
    //结果
    LinkedList<Integer> path;
    //结果综合
    int pathSum;

    public List<List<Integer>> combinationSum3(int k, int n) {
        result = new ArrayList<>();
        path = new LinkedList<>();
        backtrack(n, k, 1);
        return result;
    }
    
    //回溯
    public void backtrack(int n, int k, int start) {
        //结束
        if (path.size() == k) {
            if (pathSum == n) {
                result.add(new LinkedList<>(path));
            }
            return;
        }
        //遍历序列
        for (int i = start; i <= 9; i++) {
            path.push(i);
            pathSum += i;
            //递归
            backtrack(n, k, i + 1);
            //回溯,撤销操作
            pathSum -= path.pop();
        }
    }
}

⚡ 剪枝优化

同样也可以进行剪枝优化,也很好想,如果pathNum>n ,那就没必要再遍历了。

class Solution {
   //结果集合
    List<List<Integer>> result;
    //结果
    LinkedList<Integer> path;
    //结果综合
    int pathSum;

    public List<List<Integer>> combinationSum3(int k, int n) {
        result = new ArrayList<>();
        path = new LinkedList<>();
        backtrack(n, k, 1);
        return result;
    }
    
    //回溯
    public void backtrack(int n, int k, int start) {
        //剪枝优化
        if (pathSum > n) {
            return;
        }
        //结束
        if (path.size() == k) {
            if (pathSum == n) {
                result.add(new LinkedList<>(path));
            }
            return;
        }
        //遍历序列
        for (int i = start; i <= 9; i++) {
            path.push(i);
            pathSum += i;
            //递归
            backtrack(n, k, i + 1);
            //回溯,撤销操作
            pathSum -= path.pop();
        }
    }
}

LeetCode39. 组合总和

☕ 题目:39. 组合总和 (https://leetcode-cn.com/problems/combination-sum/)

❓ 难度:中等

📕 描述:

给定一个无重复元素的正整数数组 candidates 和一个正整数 target ,找出 candidates 中所有可以使数字和为目标数 target 的唯一组合。

candidates 中的数字可以无限制重复被选取。如果至少一个所选数字数量不同,则两种组合是唯一的。

对于给定的输入,保证和为 target 的唯一组合数少于 150 个。

示例 1:

输入: candidates = [2,3,6,7], target = 7
输出: [[7],[2,2,3]]

示例 2:

输入: candidates = [2,3,5], target = 8
输出: [[2,2,2,2],[2,3,3],[3,5]]

示例 3:

输入: candidates = [2], target = 1
输出: []

示例 4:

输入: candidates = [1], target = 1
输出: [[1]]

示例 5:

输入: candidates = [1], target = 2
输出: [[1,1]]

提示:

  • 1 <= candidates.length <= 30
  • 1 <= candidates[i] <= 200
  • candidate 中的每个元素都是独一无二的。
  • 1 <= target <= 500

💡 思路:

这道题和我们上面的有什么区别呢?

它没有数量要求,可以无限重复,但是有总和的限制。

组合总和

这里有两个关键点:

  • 元素可以重复使用
  • 组合不可重复

我们看看如何通过回溯三要素来carry:

  • 返回值&参数

参数里需要start标明起点,为什么呢?因为要求组合不重复,所以需要限制下次搜索的起点,是基于本次选择,这样就不会选到本次选择同层左边的数。

  • 终止条件

这道题没有限制数的个数,所以我们要根据pathSum>target(当前组合不满足)和pathSum==target(当前组合满足)来终止递归。

  • 单层逻辑

单层仍然从start开始,搜索 candidates。

🖊 代码:

class Solution {
   //结果结合
    List<List<Integer>> result;
    //结果路径
    LinkedList<Integer> path;
    //结果路径值的和
    int pathSum;

    public List<List<Integer>> combinationSum(int[] candidates, int target) {
        result = new ArrayList<>();
        path = new LinkedList<>();
        pathSum = 0;
        backtrack(candidates, target, 0);
        return result;
    }

    public void backtrack(int[] candidates, int target, int start) {
        //终止条件
        if (pathSum > target) return;
        if (pathSum == target) {
            result.add(new LinkedList<>(path));
        }
        for (int i = start; i < candidates.length; i++) {
            pathSum += candidates[i];
            path.push(candidates[i]);
            //注意,i不用加1,表示当前数可以重复读取
            backtrack(candidates, target, i);
            //回溯
            pathSum -= path.pop();
        }
    }
}

⚡ 剪枝优化

又到了剪枝优化时间,在本层循环,如果发现下一层的pathSum(本层pathSum+candidates[i]),那么就可以结束本层循环,注意要先把candidates拍一下序。

class Solution {
    //结果结合
    List<List<Integer>> result;
    //结果路径
    LinkedList<Integer> path;
    //结果路径值的和
    int pathSum;

    public List<List<Integer>> combinationSum(int[] candidates, int target) {
        result = new ArrayList<>();
        path = new LinkedList<>();
        pathSum = 0;
        //剪枝优化,先排序
        Arrays.sort(candidates);
        backtrack(candidates, target, 0);
        return result;
    }

    public void backtrack(int[] candidates, int target, int start) {
        //终止条件
        if (pathSum > target) return;
        if (pathSum == target) {
            result.add(new LinkedList<>(path));
        }
       //剪枝优化,判断循环之后的pathSum是否会超过target
        for (int i = start; i < candidates.length && pathSum + candidates[i] <= target; i++) {
            pathSum += candidates[i];
            path.push(candidates[i]);
            //注意,i不用加1,表示当前数可以重复读取
            backtrack(candidates, target, i);
            //回溯
            pathSum -= path.pop();
        }
    }
}

LeetCode40. 组合总和 II

☕ 题目:40. 组合总和 II (https://leetcode-cn.com/problems/combination-sum-ii/)

❓ 难度:中等

📕 描述:

给定一个数组 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合。

candidates 中的每个数字在每个组合中只能使用一次。

注意:解集不能包含重复的组合。

示例 1:

输入: candidates = [10,1,2,7,6,1,5], target = 8,
输出:
[
[1,1,6],
[1,2,5],
[1,7],
[2,6]
]

示例 2:

输入: candidates = [2,5,2,1,2], target = 5,
输出:
[
[1,2,2],
[5]
]

提示:

  • 1 <= candidates.length <= 100
  • 1 <= candidates[i] <= 50
  • 1 <= target <= 30

💡 思路:

这道题和上一道题有啥区别呢?

  • candidates里每个数字在每个组合里只能使用一次
  • candidates里的元素是有重复的

所以这道题的关键在于:集合(数组candidates)有重复元素,但还不能有重复的组合

关于这个去重,有什么思路呢?

  • 利用HashSet的特性去重,但是容易超时

  • 还有一种办法,先把数组排序[1,3,1] --> [1,1,3],我们比较一下相邻的元素,重复的就跳过

我们把模拟树画一下:

模拟树

三要素走起:

  • 返回值&参数

和上一道基本一致。

  • 终止条件
    • pathSum>target和pathSum==target。
    • 我们这次直接剪枝,提前判断下次pathSum是否大于target,所以pathSum>target可以省略

🖊 代码:

class Solution {
      //结果集合
    List<List<Integer>> result;
    //结果路径
    LinkedList<Integer> path;
    //结果路径值总和
    int pathSum;

    public List<List<Integer>> combinationSum2(int[] candidates, int target) {
        //排序condidates,去重前提
        Arrays.sort(candidates);
        //初始化相关变量
        result = new ArrayList<>();
        path = new LinkedList<>();
        pathSum = 0;
        backtrack(candidates, target, 0);
        return result;
    }

    public void backtrack(int[] candidates, int target, int start) {
        //终止条件
        if (pathSum == target) {
            result.add(new LinkedList<>(path));
            return;
        }
        //剪枝操作
        for (int i = start; i < candidates.length && candidates[i] + pathSum <= target; i++) {
            //同一层使用过的元素跳过
            if (i > start && candidates[i] == candidates[i - 1]) {
                continue;
            }
            pathSum += candidates[i];
            path.push(candidates[i]);
            //每个数字在每个组合中只能用一次,所以i++
            backtrack(candidates, target, i + 1);
            //回溯
            pathSum -= path.pop();
        }
    }
}

LeetCode17. 电话号码的字母组合

☕ 题目:17. 电话号码的字母组合(https://leetcode-cn.com/problems/letter-combinations-of-a-phone-number/)

❓ 难度:中等

📕 描述:

给定一个仅包含数字 2-9 的字符串,返回所有它能表示的字母组合。答案可以按 任意顺序 返回。

给出数字到字母的映射如下(与电话按键相同)。注意 1 不对应任何字母。

17

示例 1:

输入:digits = "23"
输出:["ad","ae","af","bd","be","bf","cd","ce","cf"]

示例 2:

输入:digits = ""
输出:[]

示例 3:

输入:digits = "2"
输出:["a","b","c"]

提示:

  • 0 <= digits.length <= 4
  • digits[i] 是范围 ['2', '9'] 的一个数字。

💡 思路:

其实扒开表皮,这道题和77.组合本质上是一样。只不过序列和组合个数没有明确给出。

  • 序列是什么:digits 映射成的字母序列
  • 组合个数:digits的大小

先画抽象树:

电话号码的字母组合

🖊 代码:

class Solution {
    //结果集合
    List<String> result;
    //结果
    StringBuilder path;
    //每个路径个数
    int pathNum;
    //映射数组,0,1空出来,方便直接映射
    String[] numsMap = {" ", " ", "abc", "def", "ghi", "jkl", "mno", "pqrs", "tuv", "wxyz"};

    public List<String> letterCombinations(String digits) {
        result = new ArrayList<>();
        if (digits == null || digits.length() == 0) {
            return result;
        }
        path = new StringBuilder();
        pathNum = 0;
        backtrack(digits, pathNum);
        return result;
    }

    public void backtrack(String digits, int pathNum) {
        if (pathNum == digits.length()) {
            result.add(path.toString());
            return;
        }
        //获取映射字母
        String letters = numsMap[digits.charAt(pathNum) - '0'];
        for (int i = 0; i < letters.length(); i++) {
            path.append(letters.charAt(i));
            //注意,pathNum+1,要处理下一层
            backtrack(digits, pathNum + 1);
            //回溯
            path.deleteCharAt(path.length() - 1);
        }
    }
}

分割问题

LeetCode131. 分割回文串

☕ 题目:131. 分割回文串 (https://leetcode-cn.com/problems/palindrome-partitioning/)

❓ 难度:中等

📕 描述:

给你一个字符串 s,请你将 s 分割成一些子串,使每个子串都是 回文串 。返回 s 所有可能的分割方案。

回文串 是正着读和反着读都一样的字符串。

示例 1:

输入:s = "aab"
输出:[["a","a","b"],["aa","b"]]

示例 2:

输入:s = "a"
输出:[["a"]]

提示:

  • 1 <= s.length <= 16
  • s 仅由小写英文字母组成

💡 思路:

我们写了一些组合问题,现在又是一类新的问题——分割

但其实,分割问题,也类似组合。

例如对于字符串abcdef:[1]

  • 组合问题:选取一个a之后,在bcdef中再去选取第二个,选取b之后在cdef中在选组第三个.....。
  • 切割问题:切割一个a之后,在bcdef中再去切割第二段,切割b之后在cdef中在切割第三段…….

先画一下抽象树:

分割回文串抽象树

回溯三要素:

  • 参数

我们需要一个start来标记下一轮递归遍历的起始位置。

  • 终止条件

如果start已经超过字符串的长度,那么说明我们path中的组合是回文串。

  • 单层逻辑

单层逻辑和之前的逻辑大体类似,不过需要判断一下字符串是否是回文串,这个比较简单。

🖊 代码:

class Solution {
     List<List<String>> result;
    LinkedList<String> path;

    public List<List<String>> partition(String s) {
        result = new ArrayList<>();
        path = new LinkedList<>();
        backtrack(s, 0);
        return result;
    }

    public void backtrack(String s, int start) {
        //结束条件
        if (start >= s.length()) {
            result.add(new ArrayList<>(path));
            return;
        }
        for (int i = start; i < s.length(); i++) {
            //如果是回文串
            if (isPalidrome(s, start, i)) {
                String r = s.substring(start, i+1);
                path.addLast(r);
            } else {
                continue;
            }
            //起始位置后移
            backtrack(s, i + 1);
            //回溯
            path.removeLast();
        }
    }

    //判断是否回文串
    boolean isPalidrome(String s, int start, int end) {
        for (int i = start, j = end; i < j; i++, j--) {
            if (s.charAt(i) != s.charAt(j)) {
                return false;
            }
        }
        return true;
    }
}

LeetCode93. 复原 IP 地址

☕ 题目:93. 复原 IP 地址 (https://leetcode-cn.com/problems/restore-ip-addresses/)

❓ 难度:中等

📕 描述:

给定一个只包含数字的字符串,用以表示一个 IP 地址,返回所有可能从 s 获得的 有效 IP 地址 。你可以按任何顺序返回答案。

有效 IP 地址 正好由四个整数(每个整数位于 0 到 255 之间组成,且不能含有前导 0),整数之间用 '.' 分隔。

例如:"0.1.2.201" 和 "192.168.1.1" 是 有效 IP 地址,但是 "0.011.255.245"、"192.168.1.312" 和 "192.168@1.1" 是 无效 IP 地址。

示例 1:

输入:s = "25525511135"
输出:["255.255.11.135","255.255.111.35"]

示例 2:

输入:s = "0000"
输出:["0.0.0.0"]

示例 3:

输入:s = "1111"
输出:["1.1.1.1"]

示例 4:

输入:s = "010010"
输出:["0.10.0.10","0.100.1.0"]

示例 5:

输入:s = "101023"
输出:["1.0.10.23","1.0.102.3","10.1.0.23","10.10.2.3","101.0.2.3"]

提示:

  • 0 <= s.length <= 3000
  • s 仅由数字组成

💡 思路:

这道题是不是和上一道题类似啊。

我们先把抽象树画一下:

复原ip地址抽象树

分支比较多,偷懒省去了一些分支。

直接上回溯三要素:

  • 参数

因为ip为四段构成,所以我们需要一个参数来记录段数,这里用的是剩余的段数residue

分割问题,需要标记start

  • 终止条件

终止条件是切割到了终点;

但是这道题又有段数的要求,所以还要加入段数的判断。

  • 单层

单层里面,除了回溯之类,我们还要判断当前段是否满足构成ip的要求。

🖊 代码:

class Solution {
    List<String> res = new ArrayList<>();
    Deque<String> path = new ArrayDeque<>(4);
    int len;

    public List<String> restoreIpAddresses(String s) {
        len = s.length();
        if (len > 12 || len < 4) return res;
        backtrack(s, 0, 4);
        return res;
    }

    /**
     *
     * @param s 字符串
     * @param start 起始位置
     * @param residue 剩余段数
     */
    private void backtrack(String s, int start, int residue) {
        //符合要求
        //字符已经用完,而且为四段
        if (start == len && residue == 0) {
            res.add(String.join(".", path));
            return;
        }
        for (int i = start; i < start + 3; i++) {
            if (i >= len) break;
            //减枝
            if (residue * 3 < len - i) continue;
            //只有符合要求的才加入
            if (isIpSegment(s, start, i)) {
                String currentIpSegment = s.substring(start, i + 1);
                path.addLast(currentIpSegment);
                backtrack(s, i + 1, residue - 1);
                //回溯
                path.removeLast();
            }
        }
    }

    //判断字串是否符合ip要求
    private boolean isIpSegment(String s, int left, int right) {
        //首位0情况
        if (right - left + 1 > 1 && s.charAt(left) == '0') return false;
        //判断对应数字是否满足范围
        int num = 0;
        for (int i = left; i <= right; i++) {
            num = num * 10 + s.charAt(i) - '0';
        }
        return num >= 0 && num <= 255;
    }
}

子集问题

LeetCode78. 子集

☕ 题目:78. 子集 (https://leetcode-cn.com/problems/subsets/)

❓ 难度:中等

📕 描述:

给你一个整数数组 nums ,数组中的元素 互不相同 。返回该数组所有可能的子集(幂集)。

解集 不能 包含重复的子集。你可以按 任意顺序 返回解集。

示例 1:

输入:nums = [1,2,3]
输出:[[],[1],[2],[1,2],[3],[1,3],[2,3],[1,2,3]]

示例 2:

输入:nums = [0]
输出:[[],[0]]

提示:

  • 1 <= nums.length <= 10
  • -10 <= nums[i] <= 10
  • nums 中的所有元素 互不相同

💡 思路:

这和我们前面做的 77.组合也是类似得。

先画抽象树结构:

子集

还是回溯三要素:

  • 参数

组合不重复,所以start标记起点

  • 终止条件

把数组所有元素用完,就终止递归,也就是start走到了最后一个位置。

  • 单层逻辑

就一点需要注意,需要收集所有得组合。

🖊 代码:

class Solution {
    List<List<Integer>> result = new ArrayList<>();
    LinkedList<Integer> path = new LinkedList<>();

    public List<List<Integer>> subsets(int[] nums) {
        if (nums == null || nums.length == 0) {
            return result;
        }
        backstrck(nums, 0);
        return result;
    }

    public void backstrck(int[] nums, int start) {
        //放在最上面,否则漏掉本次
        result.add(new ArrayList<>(path));
        //终止条件
        if (start >=nums.length) {
            return;
        }
        for (int i = start; i <nums.length; i++) {
            path.addLast(nums[i]);
            backstrck(nums, i + 1);
            //回溯
            path.removeLast();
        }
    }
}

LeetCode90. 子集 II

☕ 题目:90. 子集 II (https://leetcode-cn.com/problems/subsets-ii/)

❓ 难度:中等

📕 描述:

给你一个整数数组 nums ,其中可能包含重复元素,请你返回该数组所有可能的子集(幂集)。

解集 不能 包含重复的子集。返回的解集中,子集可以按 任意顺序 排列。

示例 1:

输入:nums = [1,2,2]
输出:[[],[1],[1,2],[1,2,2],[2],[2,2]]

示例 2:

输入:nums = [0]
输出:[[],[0]]

提示:

  • 1 <= nums.length <= 10
  • -10 <= nums[i] <= 10

💡 思路:

和上一道题有一点不一样,nums里面有重复的元素,而要保持组合的惟一,我们得想一个去重的办法。

前面的40. 组合总和 II 还记得吗?那道题里序列里同样有重复的元素。

我们是怎么去重的呢?先排序数组,相邻元素重复就跳过。

子集II抽象树

🖊 代码:

class Solution {
    List<List<Integer>> result = new ArrayList<>();
    LinkedList<Integer> path = new LinkedList<>();

    public List<List<Integer>> subsetsWithDup(int[] nums) {
        if (nums == null || nums.length == 0) {
            result.add(new ArrayList<>());
            return result;
        }
        //先排序数组
        Arrays.sort(nums);
        backtrack(nums, 0);
        return result;
    }

    public void backtrack(int[] nums, int start) {
        result.add(new ArrayList<>(path));
        //终止条件
        if (start >= nums.length) {
            return;
        }
        for (int i = start; i < nums.length; i++) {
            //先判断是否重复
            if (i > start && nums[i] == nums[i - 1]) {
                continue;
            }
            path.addLast(nums[i]);
            backtrack(nums, i + 1);
            //回溯
            path.removeLast();
        }
    }
}

LeetCode491. 递增子序列

☕ 题目:491. 递增子序列 (https://leetcode-cn.com/problems/increasing-subsequences/)

❓ 难度:中等

📕 描述:

给你一个整数数组 nums ,找出并返回所有该数组中不同的递增子序列,递增子序列中 至少有两个元素 。你可以按 任意顺序 返回答案。

数组中可能含有重复元素,如出现两个整数相等,也可以视作递增序列的一种特殊情况。

示例 1:

输入:nums = [4,6,7,7]
输出:[[4,6],[4,6,7],[4,6,7,7],[4,7],[4,7,7],[6,7],[6,7,7],[7,7]]

示例 2:

输入:nums = [4,4,3,2,1]
输出:[[4,4]]

提示:

  • 1 <= nums.length <= 15
  • -100 <= nums[i] <= 100

💡 思路:

这道题乍一看,递增?直接套90.子集II,当然,肯定是不行的。

注意啊,我们这个整数数组是不能改变次序的,

所以上面我们用排序的方式去重在这里用不上。

那怎么办呢?

我们需要用一个结构来保存每一层用过的元素,来给它去重。

我们可以选择用map来存储用过的元素,来给每一层的循环去重。

递增子序列-抽象树

回溯三要素:

  • 参数

组合不重复,需要start。

  • 终止条件

遍历完nums。

  • 单层逻辑
  1. 去重

用map存储一层里用过的元素,选择元素之前,判断元素是否用过。

  1. 递增

每个元素和队尾元素比一下,判断是否满足递增的要求。

🖊 代码:

class Solution {
    List<List<Integer>> result = new ArrayList<>();
    LinkedList<Integer> path = new LinkedList();

    public List<List<Integer>> findSubsequences(int[] nums) {
        if (nums == null || nums.length == 0) {
            result.add(new ArrayList<>());
            return result;
        }
        backtrack(nums, 0);
        return result;
    }

    public void backtrack(int[] nums, int start) {
        //使用map辅助去重
        Map<Integer, Integer> map = new HashMap<>();
        if (path.size() > 1) {
            result.add(new ArrayList<>(path));
        }
        if (start >= nums.length) {
            return;
        }
        for (int i = start; i < nums.length; i++) {
            //判断当前元素序列是否递增
            if (!path.isEmpty() && path.getLast() > nums[i]) {
                continue;
            }
            //本层循环元素已经用过,去重
            if (map.containsKey(nums[i])) {
                continue;
            }
            path.addLast(nums[i]);
            map.put(nums[i], i);
            backtrack(nums, i + 1);
            path.removeLast();
        }
    }
}

排列问题

LeetCode46. 全排列

☕ 题目:46. 全排列 (https://leetcode-cn.com/problems/permutations/)

❓ 难度:中等

📕 描述:

给定一个不含重复数字的数组 nums ,返回其 所有可能的全排列 。你可以 按任意顺序 返回答案。

示例 1:

输入:nums = [1,2,3]
输出:[[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]

示例 2:

输入:nums = [0,1]
输出:[[0,1],[1,0]]

示例 3:

输入:nums = [1]
输出:[[1]]

提示:

  • 1 <= nums.length <= 6
  • -10 <= nums[i] <= 10
  • nums 中的所有整数 互不相同

💡 思路:

这里注意,我们在每一层去重。

我们之前用过两种方法去重:排序去重map去重

这用一个新的办法,用一个boolean数组used标记元素是否被用过。

先画抽象树:

全排列

回溯三部曲:

  • 结束条件

path中取到了等于集合得数量.

  • 参数

注意啊,因为这里要从头开始搜索,所以就不用start了;

我们去重用的used数组直接定义全局变量;

  • 单层逻辑

需要根据used数组判断当前元素是否用过。

🖊 代码:

class Solution {
    List<List<Integer>> result = new ArrayList<>();
    LinkedList<Integer> path = new LinkedList<>();
    boolean[] used;

    public List<List<Integer>> permute(int[] nums) {
        if (nums == null || nums.length == 0) {
            result.add(path);
            return result;
        }
        used = new boolean[nums.length];
        backtrack(nums);
        return result;
    }

    public void backtrack(int[] nums) {
        if (path.size() == nums.length) {
            result.add(new ArrayList<>(path));
            return;
        }
        for (int i = 0; i < nums.length; i++) {
            //去重判断
            if (used[i]) {
                continue;
            }
            //标记用过
            used[i] = true;
            path.addLast(nums[i]);
            backtrack(nums);
            //回溯
            used[i] = false;
            path.removeLast();
        }
    }
}

LeetCode47. 全排列 II

☕ 题目:47. 全排列 II (https://leetcode-cn.com/problems/permutations-ii/)

❓ 难度:中等

📕 描述:

给定一个可包含重复数字的序列 nums ,按任意顺序 返回所有不重复的全排列。

示例 1:

输入:nums = [1,1,2]
输出:
[[1,1,2],
 [1,2,1],
 [2,1,1]]

示例 2:

输入:nums = [1,2,3]
输出:[[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]

提示:

  • 1 <= nums.length <= 8
  • -10 <= nums[i] <= 10

💡 思路:

这道题在上一道题的基础上:给定一个可包含重复数字的序列 nums

又到了我们喜闻乐见的去重时间,这个去重是单层的去重。

这次我们可以使用排序,相邻元素比较的方式去重。

先画抽象树:

全排列II

🖊 代码:

class Solution {
     List<List<Integer>> result = new ArrayList<>();
    LinkedList<Integer> path = new LinkedList<>();
    boolean[] used;

    public List<List<Integer>> permuteUnique(int[] nums) {
        if (nums == null || nums.length == 0) {
            result.add(path);
            return result;
        }
        //排序无序集合
        Arrays.sort(nums);
        used = new boolean[nums.length];
        backtrack(nums);
        return result;
    }

    public void backtrack(int[] nums) {
        if (path.size() == nums.length) {
            result.add(new ArrayList<>(path));
            return;
        }
        for (int i = 0; i < nums.length; i++) {
            //判断元素本层是否用过
            if (i > 0 && nums[i] == nums[i - 1] && used[i - 1] == false) {
                continue;
            }
            //判断元素本枝干是否用过
            if (used[i]) {
                continue;
            }
            //开始处理
            //标记同一个枝干用过
            used[i] = true;
            path.addLast(nums[i]);
            backtrack(nums);
            //回溯
            path.removeLast();
            used[i] = false;
        }
    }
}

棋盘问题

LeetCode51. N 皇后

☕ 题目:51. N 皇后 (https://leetcode-cn.com/problems/n-queens/)

❓ 难度:困难

📕 描述:

n 皇后问题 研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击。

给你一个整数 n ,返回所有不同的 n 皇后问题 的解决方案。

每一种解法包含一个不同的 n 皇后问题 的棋子放置方案,该方案中 'Q' 和 '.' 分别代表了皇后和空位。

示例 1:

N皇后

输入:n = 4
输出:[[".Q..","...Q","Q...","..Q."],["..Q.","Q...","...Q",".Q.."]]
解释:如上图所示,4 皇后问题存在两个不同的解法。

示例 2:

输入:n = 1
输出:[["Q"]]

提示:

  • 1 <= n <= 9
  • 皇后彼此不能相互攻击,也就是说:任何两个皇后都不能处于同一条横行、纵行或斜线上。

💡 思路:

首先看一下,每个组合又什么限制呢?

  • 不能同行
  • 不能同列
  • 不能在同一条斜线

搜索皇后的位置,同样可以抽象成一棵树。

N皇后

矩阵的高就是树的高度,矩阵的宽就是每一个节点的宽度。

我们拿皇后的约束条件来剪枝,只要能搜索到树的叶子节点,那么就说明找到和合适的位置。

回溯三要素上吧!

  • 参数

需要一个二维数组表示棋盘;

参数n记录棋盘大小;

用row记录遍历到棋盘的第几层;

  • 终止条件

到了最底的一层,说明找到合适的皇后的位置;

  • 单层逻辑

需要判断当前选择是否符合N皇后约束条件;

三个条件,行不用管,因为我们是一行一行往下的。

只需要判断左上角斜方向,列方向,右上角斜方向。

判断N皇后条件

🖊 代码:

class Solution {
     List<List<String>> result = new ArrayList<>();

    public List<List<String>> solveNQueens(int n) {
        //棋盘
        char[][] board = new char[n][n];
        //初始化棋盘
        for (char[] c : board) {
            Arrays.fill(c, '.');
        }
        backtrack(board, n, 0);
        return result;
    }

    public void backtrack(char[][] board, int n, int row) {
        //终止条件,到底了
        if (row == n) {
            result.add(arrayToList(board));
            return;
        }
        for (int col = 0; col < n; col++) {
            //判断是否符合N皇后要求
            if (!isValid(board, n, row, col)) continue;
            //开始操作
            board[row][col] = 'Q';
            backtrack(board, n, row + 1);
            //回溯
            board[row][col] = '.';
        }
    }

    //判断当前位置是否满足N皇后要求
    public boolean isValid(char[][] board, int n, int row, int col) {
        //行不用判断,每层只有一个
        //col列判断
        for (int k = 0; k < n; k++) {
            if (board[k][col] == 'Q') {
                return false;
            }
        }
        //检查主对角线(45度)
        for (int i = row - 1, j = col - 1; i >= 0 && j >= 0; i--, j--) {
            if (board[i][j] == 'Q') {
                return false;
            }
        }
        //检查副对角线(135度)
        for (int i = row - 1, j = col + 1; i >= 0 && j <= n - 1; i--, j++) {
            if (board[i][j] == 'Q') {
                return false;
            }
        }
        return true;
    }

    //将棋盘数组转换为字符串列表
    public List<String> arrayToList(char[][] board) {
        List<String> path = new ArrayList<>();
        for (char[] c : board) {
            path.add(String.valueOf(c));
        }
        return path;
    }
}

LeetCode 37. 解数独

☕ 题目:37. 解数独(https://leetcode-cn.com/problems/sudoku-solver/)

❓ 难度:困难

📕 描述:

编写一个程序,通过填充空格来解决数独问题。

数独的解法需 遵循如下规则:

  • 数字 1-9 在每一行只能出现一次。
  • 数字 1-9 在每一列只能出现一次。
  • 数字 1-9 在每一个以粗实线分隔的 3x3 宫内只能出现一次。(请参考示例图)

数独部分空格内已填入了数字,空白格用 '.' 表示。

img

输入:board = [["5","3",".",".","7",".",".",".","."],
["6",".",".","1","9","5",".",".","."],
[".","9","8",".",".",".",".","6","."],
["8",".",".",".","6",".",".",".","3"],
["4",".",".","8",".","3",".",".","1"],
["7",".",".",".","2",".",".",".","6"],
[".","6",".",".",".",".","2","8","."],
[".",".",".","4","1","9",".",".","5"],
[".",".",".",".","8",".",".","7","9"]]

输出:[["5","3","4","6","7","8","9","1","2"],
["6","7","2","1","9","5","3","4","8"],
["1","9","8","3","4","2","5","6","7"],
["8","5","9","7","6","1","4","2","3"],
["4","2","6","8","5","3","7","9","1"],
["7","1","3","9","2","4","8","5","6"],
["9","6","1","5","3","7","2","8","4"],
["2","8","7","4","1","9","6","3","5"],
["3","4","5","2","8","6","1","7","9"]]

解释:输入的数独如上图所示,唯一有效的解决方案如下所示:

img

提示:

  • board.length == 9
  • board[i].length == 9
  • board[i][j] 是一位数字或者 '.'
  • 题目数据 保证 输入数独仅有一个解

💡 思路:

这道题可以说是N皇后问题的plu版本了。

这道题矩阵的长度和宽度都比N皇后更长更宽。

而且判断重复也更难:

  • 同行是否重复
  • 同列是否重复
  • 9宫格里是否重复

我们先大概画一棵抽象树:

数独抽象树

这个图画起来太麻烦了,差不多就那个意思,接下来我们三部曲走起[1]。

  • 返回值与参数

因为解数独找到一个符合的条件就返回,所以返回值用boolean类型。

  • 终止条件

可以不用终止条件,因为

  • 单层逻辑

需要一个两个循环套着的递归,一个循环棋盘的行,一个循环棋盘的列,递归遍历这个位置放9个数字的可能。

🖊 代码:

class Solution {
    public void solveSudoku(char[][] board) {
        backtrack(board);
    }

    boolean backtrack(char[][] board) {
        //遍历行
        for (int row = 0; row < board.length; row++) {
            //遍历列
            for (int col = 0; col < board[0].length; col++) {
                if (board[row][col] != '.') continue;
                //尝试1-9
                for (char k = '1'; k <= '9'; k++) {
                    //不满足,跳过
                    if (!isValid(board, row, col, k)) continue;
                    //满足要求操作
                    board[row][col] = k;
                    //找到一组,立即返回
                    if (backtrack(board)) {
                        return true;
                    }
                    //回溯,撤销填入
                    board[row][col] = '.';
                }
                //9个数试完了,不行,返回false
                return false;
            }
        }
        return true;
    }

    //判断是否符合数独要求
    boolean isValid(char[][] board, int row, int col, char val) {
        //判断行是否重复
        for (int i = 0; i < 9; i++) {
            if (board[row][i] == val) {
                return false;
            }
        }
        //判断列是否重复
        for (int j = 0; j < 9; j++) {
            if (board[j][col] == val) {
                return false;
            }
        }
        //判断小9宫格是否重复
        int startRow = (row / 3) * 3;
        int startCol = (col / 3) * 3;
        for (int i = startRow; i < startRow + 3; i++) {
            for (int j = startCol; j < startCol + 3; j++) {
                if (board[i][j] == val) {
                    return false;
                }
            }
        }
        return true;
    }
}

总结

接着顺口溜总结:

总结


简单的事情重复做,重复的事情认真做,认真的事情有创造性地做。

点赞关注收藏一键三连,鼓励我继续输出精彩博文!


参考:

[1]. https://github.com/youngyangyang04/leetcode-master

[2]. https://labuladong.gitbook.io

[3]. https://leetcode-cn.com/problems/restore-ip-addresses/solution/hui-su-suan-fa-hua-tu-fen-xi-jian-zhi-tiao-jian-by/

posted @ 2021-09-14 20:11  三分恶  阅读(4578)  评论(1编辑  收藏  举报