Codevs 1523 地精部落

1523 地精部落

 

省队选拔赛

 时间限制: 1 s
 空间限制: 256000 KB
 题目等级 : 大师 Master
 
 
 
题目描述 Description

    传说很久以前,大地上居住着一种神秘的生物:地精。 
    地精喜欢住在连绵不绝的山脉中。具体地说,一座长度为 N 的山脉 H可分为从左到右的 N 段,每段有一个独一无二的高度 Hi,其中Hi是1到N 之间的正整数。 
    如果一段山脉比所有与它相邻的山脉都高,则这段山脉是一个山峰。位于边缘的山脉只有一段相邻的山脉,其他都有两段(即左边和右边)。 
    类似地,如果一段山脉比所有它相邻的山脉都低,则这段山脉是一个山谷。 
    地精们有一个共同的爱好——饮酒,酒馆可以设立在山谷之中。地精的酒馆不论白天黑夜总是人声鼎沸,地精美酒的香味可以飘到方圆数里的地方。 
    地精还是一种非常警觉的生物,他们在每座山峰上都可以设立瞭望台,并轮流担当瞭望工作,以确保在第一时间得知外敌的入侵。 
    地精们希望这N 段山脉每段都可以修建瞭望台或酒馆的其中之一,只有满足这个条件的整座山脉才可能有地精居住。 
    现在你希望知道,长度为N 的可能有地精居住的山脉有多少种。两座山脉A和B不同当且仅当存在一个 i,使得 Ai≠Bi。由于这个数目可能很大,你只对它除以P的余数感兴趣。

输入描述 Input Description

    输入仅含一行,两个正整数 N,P。 

输出描述 Output Description

输出仅含一行,一个非负整数,表示你所求的答案对P取余之后的结果。

样例输入 Sample Input

4 7

样例输出 Sample Output

3

数据范围及提示 Data Size & Hint

共有10 种可能的山脉,它们是: 
1324 1423 2143 2314 2413 
3142 3241 3412 4132 4231 



【数据规模和约定】 
对于 20%的数据,满足 N≤10; 
对于 40%的数据,满足 N≤18; 
对于 70%的数据,满足 N≤550; 
对于 100%的数据,满足 3≤N≤4200,P≤109。

 

/*
    f[i][j]第一位为[1,j]且第一位下降的1~i的合法排列数,先给出结论:f[i][j] = f[i][j – 1] + f[i – 1][i – j]
    首先是要加上[1,j – 1]的合法排列数,然后考虑j开头的第一位下降合法排列数
    这个就是求以[1,j]开头的1~n-1的第一位上升合法排列数(这个应该可以YY一下吧..)
    但是第一位上升的合法排列数我们是没有算的,但注意到第一位上升和第一位下降具有对称性
    所以求以[1,j]开头的1~n-1的第一位上升合法排列数就是f[i – 1][i – j]
    然后如果开[4200][4200]的int的话正好会被卡掉,所以必须滚动数组..
*/
#include<iostream>
#include<cstdio>
using namespace std;
int n,p;
int dp[2][5000];
int main(){
    scanf("%d%d",&n,&p);
    int x;
    dp[1][1]=1;
    for(int i=2;i<=n;i++){
        for(int j=1;j<=i;j++){
            x=i&1;
            dp[x][j]=dp[x][j-1]+dp[x^1][i-j];
            dp[x][j]%=p;
        }
    }
    printf("%d",(long long)(dp[n&1][n]*2)%p);
    return 0;
}

 

posted @ 2017-08-08 09:54  Echo宝贝儿  阅读(176)  评论(0编辑  收藏  举报