洛谷 P1412 经营与开发

P1412 经营与开发

题目描述

4X概念体系,是指在PC战略游戏中一种相当普及和成熟的系统概念,得名自4个同样以“EX”为开头的英语单词。

eXplore(探索)

eXpand(拓张与发展)

eXploit(经营与开发)

eXterminate(征服)

——维基百科

今次我们着重考虑exploit部分,并将其模型简化:

你驾驶着一台带有钻头(初始能力值w)的飞船,按既定路线依次飞过n个星球。

星球笼统的分为2类:资源型和维修型。(p为钻头当前能力值)

1.资源型:含矿物质量a[i],若选择开采,则得到a[i]*p的金钱,之后钻头损耗k%,即p=p*(1-0.01k)

2.维修型:维护费用b[i],若选择维修,则支付b[i]*p的金钱,之后钻头修复c%,即p=p*(1+0.01c)

注:维修后钻头的能力值可以超过初始值(你可以认为是翻修+升级)

金钱可以透支。

请作为舰长的你仔细抉择以最大化收入。

输入输出格式

输入格式:

 

第一行4个整数n,k,c,w。

以下n行,每行2个整数type,x。

type为1则代表其为资源型星球,x为其矿物质含量a[i];

type为2则代表其为维修型星球,x为其维护费用b[i];

 

输出格式:

 

一个实数(保留2位小数),表示最大的收入。

 

输入输出样例

输入样例#1:
5 50 50 10
1 10
1 20
2 10
2 20
1 30
输出样例#1:
375.00

说明

【数据范围】

对于30%的数据 n<=100

另有20%的数据 n<=1000;k=100

对于100%的数据 n<=100000; 0<=k,c,w,a[i],b[i]<=100;保证答案不超过10^9

“依次飞过n个星球”,第一反应就是动态规划,然后验证下无后效性即可。

这题关键点为状态的设计。

 

<Method 1>

F[i][x]表示到达第i个星球,且钻头能力值为x的最大收入值。

x因为是实数,所以要取一定的精度。对于数值范围都在100的本题,n在10左右的时候毫无压力。

时空复杂度:O(nx) x为精度范围。

期望得分:10-30;

 

 

<Method 2>

F[i][x][y]表示到达第i个星球,且之前开采过x次,维修过y次。

因为本题开采和维修对钻头的影响都是定值。所以钻头能力就是w*k^x*c^y

时空复杂度:O(n^3)

期望得分:30

 

 

<Method 3>

对于20% k=100的数据,钻头开采一次就永久损坏了。所以只需记录维修过几次即可。

时空复杂度:O(n^2)

期望得分:20    (配合Method 2为50)

 

 

<Method 4>

Method 2一样的状态设计。但是x,y的范围不需要与n相同。因为在随机情况下,开采和维修的次数寥寥无几(结合次幂考虑)。

时空复杂度:O(nxy) x,y为选手选择的范围

期望得分:30-80

 

 

<Method 5>

Method 2一样的状态设计,但是使用BFS来进行DP过程,这样就不会遍历到没有被访问到的状态,同时选手可以自己加上一些简单的贪心判断来减少状态数量。

时空复杂度:O(?)

期望得分:70-100

 

 

<Method 6>

与前5种做法截然不同。前5种做法的最大瓶颈就是“当前钻头能力”,下面我们尝试不存储“当前钻头能力”。

F[i]表示前i个星球的最优收入。很明显这是不行的,因为当前钻头能力会切实影响到后面的过程,不严谨的说,当前钻头能力有“后效性”。

 

但是这个当前钻头能力对后程的影响无非就是乘上一个数值。(就好像初始钻头能力为w,实际上你可以按1来做,最后再把ans乘上w)。

 

正难则反,F[i]表示第i--n个星球的最优收入,且假设从第i个星球开始时钻头能力为1。换句话说,这样的状态设计,规定了一个参考系

 

转移过程就变得简单:如果在第i个星球开采,那么第i+1--n个星球的初始钻头能力就是1*(1-0.01k)。换句话说,就是F[i+1]*(1-0.01k)。

所以F[i]=max{F[i+1],F[i+1]*(1-0.01k)+a[i]}

 

对于维护型星球,大同小异。就系数和代价的正负而已。

观察方程,F[i]=max{F[i+1],F[i+1]*(1-0.01k)+a[i]}

实际上就是取下i+1--n的最值而已,所以这题实际上就成了贪心。

#include<cstdio>
#include<iostream>
using namespace std;
#define N 100010
int n,t[N],a[N];
double k,c,w,ans=0;
int main(){
    scanf("%d%lf%lf%lf",&n,&k,&c,&w);
    k=1-0.01*k;c=1+0.01*c;//关键处理 
    for(int i=1;i<=n;i++) scanf("%d%d",t+i,a+i);
    for(int i=n;i>=1;i--){
        if(t[i]==1)ans=max(ans,ans*k+a[i]);
        else ans=max(ans,ans*c-a[i]);
    }
    printf("%.2lf",ans*w);
    return 0;
}

 

posted @ 2017-06-07 21:44  Echo宝贝儿  阅读(337)  评论(0编辑  收藏  举报