Codeforces 673D

D. Bear and Two Paths
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

Bearland has n cities, numbered 1 through n. Cities are connected via bidirectional roads. Each road connects two distinct cities. No two roads connect the same pair of cities.

Bear Limak was once in a city a and he wanted to go to a city b. There was no direct connection so he decided to take a long walk, visiting each city exactly once. Formally:

  • There is no road between a and b.
  • There exists a sequence (path) of n distinct cities v1, v2, ..., vn that v1 = avn = b and there is a road between vi and vi + 1 for .

On the other day, the similar thing happened. Limak wanted to travel between a city c and a city d. There is no road between them but there exists a sequence of n distinct cities u1, u2, ..., un that u1 = cun = d and there is a road between ui and ui + 1 for .

Also, Limak thinks that there are at most k roads in Bearland. He wonders whether he remembers everything correctly.

Given nk and four distinct cities abcd, can you find possible paths (v1, ..., vn) and (u1, ..., un) to satisfy all the given conditions? Find any solution or print -1 if it's impossible.

Input

The first line of the input contains two integers n and k (4 ≤ n ≤ 1000, n - 1 ≤ k ≤ 2n - 2) — the number of cities and the maximum allowed number of roads, respectively.

The second line contains four distinct integers abc and d (1 ≤ a, b, c, d ≤ n).

Output

Print -1 if it's impossible to satisfy all the given conditions. Otherwise, print two lines with paths descriptions. The first of these two lines should contain n distinct integers v1, v2, ..., vn where v1 = a and vn = b. The second line should contain n distinct integers u1, u2, ..., unwhere u1 = c and un = d.

Two paths generate at most 2n - 2 roads: (v1, v2), (v2, v3), ..., (vn - 1, vn), (u1, u2), (u2, u3), ..., (un - 1, un). Your answer will be considered wrong if contains more than k distinct roads or any other condition breaks. Note that (x, y) and (y, x) are the same road.

Examples
input
Copy
7 11
2 4 7 3
output
Copy
2 7 1 3 6 5 4
7 1 5 4 6 2 3
input
Copy
1000 999
10 20 30 40
output
Copy
-1
Note

In the first sample test, there should be 7 cities and at most 11 roads. The provided sample solution generates 10 roads, as in the drawing. You can also see a simple path of length n between 2 and 4, and a path between 7 and 3.

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
int n,k;
int main(){
    scanf("%d%d",&n,&k);
    if(n<=4||k<n+1){
        puts("-1");
        return 0;
    }
    int a,b,c,d;
    scanf("%d%d%d%d",&a,&b,&c,&d);
    printf("%d %d",a,c);
    for(int i=1;i<=n;i++){
        if(i!=a&&i!=b&&i!=c&&i!=d)printf(" %d",i);
    }
    printf(" %d %d\n",d,b);
    
    printf("%d %d",c,a);
    for(int i=1;i<=n;i++){
        if(i!=a&&i!=b&&i!=c&&i!=d)printf(" %d",i);
    }
    printf(" %d %d\n",b,d);
    return 0;
} 
posted @ 2020-01-16 14:03  Echo宝贝儿  阅读(260)  评论(0编辑  收藏  举报