IPython并行计算工具

 

IPython并行计算工具

 


解决并行计算和分布式计算的问题

  • 运行解释说明

    • 一直以来Python的并发问题都会被大家所诟病,正是因为全局解释锁的存在,导致其不能够真正的做到并发的执行。所以,我们就需要ipyparallel的存在来帮助我们处理并发计算的问题了。
    • ipyparallel中,可以利用多个engine同时运行一个任务来加快处理的速度。集群被抽象为view,包括direct_viewbalanced_view。其中,direct_view是所有的engine的抽象,当然也可以自行指定由哪些engine构成,而balanced_view是多个engine经过负载均衡之后,抽象出来的由“单一”engine构成的view。利用ipyparallel并行化的基本思路是将要处理的数据首先进行切分,然后分布到每一个engine上,然后将最终的处理结果合并,得到最终的结果,其思路和mapreduce类似。
  • 并行计算分类

    • ipcluster - 单机并行计算
    • ipyparallel - 分布式计算
  • 相关连接地址

  • 安装方式

 
bash
# 使用pip安装
$ pip install ipyparallel
  • 配置并行环境
 
bash
# 命令可以简单的创建一个通用的并行环境profile配置文件
$ ipython profile create --parallel --profile=myprofile

1. 并行计算示例

做一次wordcount的计算测试。

  • 数据来源地址
 
bash
# 使用wget下载
$ wget http://www.gutenberg.org/files/27287/27287-0.txt
  • 不并行的版本
 
python
In [1]: import re

In [2]: import io

In [3]: from collections import defaultdict

In [4]: non_word = re.compile(r'[\W\d]+', re.UNICODE)

In [5]: common_words = {
   ...: 'the','of','and','in','to','a','is','it','that','which','as','on','by',
   ...: 'be','this','with','are','from','will','at','you','not','for','no','have',
   ...: 'i','or','if','his','its','they','but','their','one','all','he','when',
   ...: 'than','so','these','them','may','see','other','was','has','an','there',
   ...: 'more','we','footnote', 'who', 'had', 'been',  'she', 'do', 'what',
   ...: 'her', 'him', 'my', 'me', 'would', 'could', 'said', 'am', 'were', 'very',
   ...: 'your', 'did', 'not',
   ...: }

In [6]: def yield_words(filename):
   ...:     import io
   ...:     with io.open(filename, encoding='latin-1') as f:
   ...:         for line in f:
   ...:             for word in line.split():
   ...:                 word = non_word.sub('', word.lower())
   ...:                 if word and word not in common_words:
   ...:                     yield word
   ...:

In [7]: def word_count(filename):
   ...:     word_iterator = yield_words(filename)
   ...:     counts = {}
   ...:     counts = defaultdict(int)
   ...:     while True:
   ...:         try:
   ...:             word = next(word_iterator)
   ...:         except StopIteration:
   ...:             break
   ...:         else:
   ...:             counts[word] += 1
   ...:     return counts
   ...:

In [8]: %time counts = word_count(filename)
CPU times: user 3.32 ms, sys: 1.4 ms, total: 4.72 ms
Wall time: 10.9 ms
  • 用 IPython 来跑一下
 
python
# 在terminal输入如下命令,然后在ipython中就都可使用并行计算
# 指定两个核心来执行
[escape@loaclhost ~]$ ipcluster start -n 2
  • 先讲下 IPython 并行计算的用法
 
python
# import之后才能用%px*的magic
In [1]: from IPython.parallel import Client

In [2]: rc = Client()

# 因为我启动了2个进程
In [3]: rc.ids
Out[3]: [0, 1]

# 如果不自动每句都需要: `%px xxx`
In [4]: %autopx
%autopx enabled

# 这里没autopx的话需要: `%px import os`
In [5]: import os

# 2个进程的pid
In [6]: print os.getpid()
[stdout:0] 62638
[stdout:1] 62636

# 在autopx下这个magic不可用
In [7]: %pxconfig --targets 1
[stderr:0] ERROR: Line magic function `%pxconfig` not found.
[stderr:1] ERROR: Line magic function `%pxconfig` not found.

# 再执行一次就会关闭autopx
In [8]: %autopx
%autopx disabled

# 指定目标对象, 这样下面执行的代码就会只在第2个进程下运行
In [10]: %pxconfig --targets 1

# 其实就是执行一段非阻塞的代码
In [11]: %%px --noblock
   ....: import time
   ....: time.sleep(1)
   ....: os.getpid()
   ....:
Out[11]: <AsyncResult: execute>

# 看只返回了第二个进程的pid
In [12]: %pxresult
Out[1:21]: 62636

# 使用全部的进程, ipython可以细粒度的控制那个engine执行的内容
In [13]: v = rc[:]

# 每个进程都导入time模块
In [14]: with v.sync_imports():
   ....:     import time
   ....:
importing time on engine(s)

In [15]: def f(x):
   ....:     time.sleep(1)
   ....:     return x * x
   ....:

# 同步的执行
In [16]: v.map_sync(f, range(10))

Out[16]: [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

# 异步的执行
In [17]: r = v.map(f, range(10))

# celery的用法
In [18]: r.ready(), r.elapsed
Out[18]: (True, 5.87735)

# 获得执行的结果
In [19]: r.get()
Out[19]: [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
  • 并行版本
 
python
In [20]: def split_text(filename):
....:    text = open(filename).read()
....:    lines = text.splitlines()
....:    nlines = len(lines)
....:    n = 10
....:    block = nlines//n
....:    for i in range(n):
....:        chunk = lines[i*block:(i+1)*(block)]
....:        with open('count_file%i.txt' % i, 'w') as f:
....:            f.write('\n'.join(chunk))
....:    cwd = os.path.abspath(os.getcwd())
....:    # 不用glob是为了精准
....:    fnames = [ os.path.join(cwd, 'count_file%i.txt' % i) for i in range(n)]
....:    return fnames

In [21]: from IPython import parallel

In [22]: rc = parallel.Client()

In [23]: view = rc.load_balanced_view()

In [24]: v = rc[:]

In [25]: v.push(dict(
   ....:     non_word=non_word,
   ....:     yield_words=yield_words,
   ....:     common_words=common_words
   ....: ))
Out[25]: <AsyncResult: _push>

In [26]: fnames = split_text(filename)

In [27]: def count_parallel():
   .....:     pcounts = view.map(word_count, fnames)
   .....:     counts = defaultdict(int)
   .....:     for pcount in pcounts.get():
   .....:         for k, v in pcount.iteritems():
   .....:             counts[k] += v
   .....:     return counts, pcounts
   .....:

# 这个时间包含了我再聚合的时间
In [28]: %time counts, pcounts = count_parallel()
# 是不是比直接运行少了很多时间
CPU times: user 50.6 ms, sys: 8.82 ms, total: 59.4 ms
# 这个时间是
Wall time: 99.6 ms

In [29]: pcounts.elapsed, pcounts.serial_time, pcounts.wall_time
Out[29]: (0.104384, 0.13980499999999998, 0.104384)

可以看出cpu时间上确实减少了,几乎一半,但真实时间上却反而增加到了164ms,用%timeit 查看,发现实际使用时间反而多出了20ms这是因为cpu计算完后还要聚合结果。这个过程也得耗时,也就是说,并行是有额外开销的。


2. 最简单的应用

并行就是多个核心同时执行任务了,最简单的就是执行重复任务,将函数提交到引擎中。

 
python
c = Client()
a = lambda :"hi~"
 
python
# 并行计算
%time c[:].apply_sync(a)
CPU times: user 22.6 ms, sys: 5.05 ms, total: 27.7 ms
Wall time: 35.4 ms

['hi~', 'hi~', 'hi~', 'hi~']
 
python
# 使用列表生成器
%time [a() for i in range(2)]
CPU times: user 10 µs, sys: 6 µs, total: 16 µs
Wall time: 17.9 µs

['hi~', 'hi~']

看得出,cpython还是相当给力的,在这种小规模计算上并行反而比用列表生成器慢很多。


3. 直接调用 ipyparallel

我们可以通过DirectView直接在ipython中通过Client对象直接的操作多个engine

 
python
from ipyparallel import Client
rc = Client()

# 查看有多少个engine
rc.ids
[0, 1, 2, 3]

# 使用全部engine
dview = rc[:]
 
python
%time map(lambda x:x**2,range(32))
CPU times: user 21 µs, sys: 5 µs, total: 26 µs
Wall time: 26.9 µs

[0,
 1,
 4,
 9,
 ...,
 900,
 961]
 
python
# 并行的map工具
%time dview.map_sync(lambda x:x**2,range(32))
CPU times: user 31.3 ms, sys: 5.12 ms, total: 36.4 ms
Wall time: 41.4 ms

[0,
 1,
 4,
 9,
 ...,
 900,
 961]

看来还是单进程给力哇!


4. 负载均衡 view

并行的一大难题便是负载均衡,直接使用DirectView并没有这方面优化,可以使用LoadBalancedView来使用负载均衡的view

 
python
lview = rc.load_balanced_view()
 
python
%time lview.map_sync(lambda x:x**2,range(32))
CPU times: user 230 ms, sys: 47.3 ms, total: 277 ms
Wall time: 305 ms

[0,
 1,
 4,
 9,
 ...,
 900,
 961]

 文章作者: Escape
 版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 Escape !
posted on 2020-06-22 18:14  曹明  阅读(1014)  评论(0编辑  收藏  举报