sicp每日一题[2.34]
1.sicp每日一题[1.42]2.sicp每日一题[1.43]3.sicp每日一题[1.44]4.sicp每日一题[1.45]5.sicp每日一题[1.46]6.sicp每日一题[2.1]7.sicp每日一题[2.2]8.sicp每日一题[2.3]9.sicp每日一题[2.4]10.sicp每日一题[2.5]11.sicp每日一题[2.6]12.sicp每日一题[2.7]13.sicp每日一题[2.8]14.sicp每日一题[2.9]15.sicp每日一题[2.11]16.sicp每日一题[2.10]17.sicp每日一题[2.12]18.sicp每日一题[2.13-2.16]19.sicp每日一题[2.17]20.sicp每日一题[2.18]21.sicp每日一题[2.19]22.sicp每日一题[2.20]23.sicp每日一题[2.21]24.sicp每日一题[2.22-2.23]25.sicp每日一题[2.24-2.27]26.sicp每日一题[2.28]27.sicp每日一题[2.29]28.sicp每日一题[2.30]29.sicp每日一题[2.31]30.sicp每日一题[2.32]31.sicp每日一题[2.33]
32.sicp每日一题[2.34]
33.sicp每日一题[2.35]34.sicp每日一题[2.36-2.37]35.sicp每日一题[2.38-2.39]36.sicp每日一题[2.40]37.sicp每日一题[2.41]38.sicp每日一题[2.42]39.sicp每日一题[2.43]40.sicp每日一题[2.44]41.sicp每日一题[2.45]42.sicp每日一题[2.46]43.sicp每日一题[2.47]44.sicp每日一题[2.48]45.sicp每日一题[2.49]46.sicp每日一题[2.50]47.sicp每日一题[2.51]48.sicp每日一题[2.52]49.sicp每日一题[2.53-2.55]50.sicp每日一题[2.56]51.sicp每日一题[2.57]52.sicp每日一题[2.58]53.sicp每日一题[2.59]54.sicp每日一题[2.60]55.sicp每日一题[2.61]56.sicp每日一题[2.62]57.sicp每日一题[2.63-2.64]58.sicp每日一题[2.65]59.sicp每日一题[2.66]60.sicp每日一题[2.67-2.68]61.sicp每日一题[2.69]62.sicp每日一题[2.70]63.sicp每日一题[2.71]64.sicp每日一题[2.72]65.sicp每日一题[2.73]66.sicp每日一题[2.74]67.sicp每日一题[2.75]68.sicp每日一题[2.76]69.sicp每日一题[2.77]70.sicp每日一题[2.78]71.sicp每日一题[2.79]72.sicp每日一题[2.80]73.sicp每日一题[2.81]74.sicp每日一题[2.82]75.sicp每日一题[2.83]76.sicp每日一题[2.84]77.sicp每日一题[2.85-2.86]Exercise 2.34
Evaluating a polynomial in x at a given value of x can be formulated as an accumulation. We evaluate the polynomial
an x^n + a{n-1} x^(n-1) + ... + a1 x + a0
using a well-known algorithm called Horner's rule, which structures the computation as
(...(an x + a{n-1})x + ... + a1)x + a_0.
In other words, we start with an, multiply by x, add a{n−1}, multiply by x, and so on, until we reach a0.
Fill in the following template to produce a procedure that evaluates a polynomial using Horner's rule. Assume that the coefficients of the polynomial are arranged in a sequence, from a0 through an.
(define (horner-eval x coefficient-sequence)
(accumulate (lambda (this-coeff higher-terms) <??>)
0
coefficient-sequence))
For example, to compute 1 + 3x + 5x^3 + x^5 at x = 2 you would evaluate
(horner-eval 2 (list 1 3 0 5 0 1))
这道题挺简单的,主要是题目里给的参数名起的太好了,本来我还不知道咋写的,一看 this-coeff 和 higher-terms 这俩参数,瞬间就明白了。
(define (horner-eval x coefficient-sequence)
(accumulate (lambda (this-coeff higher-terms) (+ (* higher-terms x) this-coeff))
0
coefficient-sequence))
(horner-eval 2 (list 1 3 0 5 0 1))
; 执行结果
79
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· DeepSeek 开源周回顾「GitHub 热点速览」
· 物流快递公司核心技术能力-地址解析分单基础技术分享
· .NET 10首个预览版发布:重大改进与新特性概览!
· AI与.NET技术实操系列(二):开始使用ML.NET
· 单线程的Redis速度为什么快?