python 数据合并
1. 数据合并
前言
一、横向合并
1. 基本合并语句
2. 键值名不一样的合并
3. “两个数据列名字重复了”的合并
二、纵向堆叠
统计师的Python日记【第6天:数据合并】
前言
根据我的Python学习计划:
Numpy → Pandas → 掌握一些数据清洗、规整、合并等功能 → 掌握类似与SQL的聚合等数据管理功能 → 能够用Python进行统计建模、假设检验等分析技能 → 能用Python打印出100元钱 → 能用Python帮我洗衣服、做饭 → 能用Python给我生小猴子......
前面我把一些基本内容都掌握了,从Python的安装到语句结构、从Numpy/Pandas的数据格式到基本的描述性统计,现在终于要进入一个“应用型”的学习——数据的合并。
其实,我对数据合并很有感情,当年我在某国家医学数据库里实习的时候,就经常用SAS对数据库进行各种合并,以查看受访者在不同数据库中的属性,可以说是使用率非常高的一个技能。
先复习一下几种数据合并方式:左连接(left join)、右连接(right join)、内连接(inner join)、全连接(full join)。
-
左连接(left join):以左边的表为基准表,将右边的数据合并过来。
-
右连接(right join):以右边的表为基准表,将左边的数据合并过来。
-
内连接(inner join):左边和右边都出现的数据才进行合并。
-
全连接(full join):不管左边还是右边,只要出现的数据都合并过来。
以上的几种合并,都是按照姓名来合并的,两个表姓名一样,即将这条数据合并,这个姓名被称为键值,反正叫什么也无所谓,有一个变量被用来作为合并参照就可以了。
OK,今天将学习Python/Pandas的数据合并,合并是基于Pandas这个库,因此首先我们要导入库:import pandas as pd
准备工作完成,开始学习~
一、横向合并
1. 基本合并语句
我有两个数据:
-
D1 为某洗发店的会员数据,包括会员编号id和会员姓名name。
生成语句为:D1 = pd.DataFrame({'id':[801, 802, 803,804, 805, 806, 807, 808, 809, 810], 'name':['Ansel', 'Wang', 'Jessica', 'Sak','Liu', 'John', 'TT','Walter','Andrew','Song']})
-
D2为该洗发店本月的初值情况,可以看出,本月只有三位会员进行了储值。
生成语句为:D2 = pd.DataFrame({'id':[803, 804, 808,901], 'save': [3000, 500, 1200, 8800]})
现在我想将这两个表合并起来,即 “id-name-save” 的表,键值为id,基本语句为:merge(D1, D2, on='id')
哎,我记得合并有左连接、右连接等等,这里我什么也没指定,默认的貌似就是内连接(inner),D1中的801等好几个、D2中的901都没有被合并上,只合并了两个数据中都存在的。
好下面我来左连接,基本语句为:merge(D1, D2, on='id', how='left')
D1都被合并进来了,D2的901则没有。
再来一个右连接,基本语句为:merge(D1, D2, on='id', how='right')
右边的所有数据都被合并进来了。
全合并的基本语句为:merge(D1, D2, on='id', how='outer')
2. 键值名不一样的合并
刚刚的D1和D2,他们都有一个变量id,假如这个键值的名字不一样怎么办?一个叫“id1”、一个叫“id2”。
这种情况只要用 left_on= 和 right_on= 分别指定两个键的名字即可,基本语句为:merge(D1, D2, left_on='id1', right_on='id2')
我有一个比较变态的问题:如果数据1的键值是变量id,数据2的键值是一个索引,该怎么合并?像这样:
也很简单,使用 left_index=True 或 right_index=True,来声明某个数据的索引应该被当做键值,基本语句为:merge(D1, D2, left_on='id', right_index=True)
3. 两个数据的列名字重复了
如果两个数据有一样的变量名,那么合并会报错吗?举个例子,现在有803、804、808、901这四位会员3月的储值数据,数据名为D3Month。
生成语句为:D3Month= pd.DataFrame({'id':[803, 804, 808, 901], 'save': [3000, 500, 1200, 8800]})
以及四月的储值数据,数据名为D4Month:
生成语句为:D4Month= pd.DataFrame({'id':[803, 804, 808, 901], 'save': [0, 1500, 1000, 2000]})
现在想把两个表合并起来,但是两个数据都有save变量,合并之后会报错吗?来看一下吧~
没有报错,并且两个save自动打上了后缀,一个是_x,一个是_y,实际上,我们也可以自己加后缀,使用 suffixes=() 选项。比如,我将后缀变为:_3Month和_4Month,基本语句为:merge(D3Month, D4Month, on='id',how='left', suffixes=('_3Month', '_4Month’))
二、纵向堆叠
第一部分的内容学习的是将两个数据横向的合并,现在学习纵向合并——也叫做堆叠。比如,我们想象之前的会员数据,被分成了两个部分:
-
D1:
-
D2:
现在咱们再将这两个部分纵向的堆叠起来,注意对这类的堆叠问题,我在以后的日记中尽量不用“合并”这个词(而使用“堆叠”),以便和第一部分的merge区分开来。堆叠的基本语句为:concat([D1,D2])
这种情况我在之前的工作中也经常遇到,而且,常常会有这样的需求:堆叠起来的数据,能不能给个标志,标出哪部分来自D1,哪部分来自D2?
肯定可以,用 keys=[ , ] 来标识出来,基本语句为:concat([D1,D2], keys=['D1', 'D2'] )
当然我们也可以横向堆叠,指定 axis=1,注意喽,虽然是横向,但不是合并(merge),仍然是堆叠,横向堆叠就是粗暴的将两个数据横向堆在一起,请看:
仍然可以用 keys=[] 来标识出那边来自D1、哪边来自D2,基本语句为:concat([D1,D2], axis=1, keys=['D1', 'D2'] )