物联网平台

ThingsBoard 二次开发之源码分析 5-如何接收 MQTT 连接

ThingsKit物联网平台

ThingsKit物联网平台可提供跨不同设备和数据源的通用PaaS服务,在整个物联网架构中起到承上启下的中介作用,联动感知层及应用层之间的所有交互——向下连接、管理物联网设备端并完成感知数据的归集与存储,向上为应用开发商与系统集成商提供应用开发的统一数据接口及共性模块工具。在实现“物联”的基础之上,感知层与应用层频繁交互过程中,产生的数据具有体量大、种类多、动态滚动的特征,物联网平台作为产业链中的核心枢纽,更是应用融合以及数据价值孵化的土壤,除提供基础设施服务支撑设备间的数据交换外,通过对平台数据的处理、分析和可视化,将数据赋能过程大幅前置,充分发挥规模效应,实现数据即生产即处理,便于数据快速应用落地,简化物联网解决方案的复杂度并降低方案成本,充当“加速层”,推进各层在应用场景的落地速度与进程。

ThingsKit物联网平台:基于ThingsBoard开发,面向中小型企业开箱即用的低代码物联网平台 :ThingsKit物联网平台

ThingsKit物联网平台演示环境 :https://docs.thingskit.com/thingskit-link/getting-started

ThingsKit物联网平台

ThingsKit物联网平台

ThingsKit物联网平台

ThingsKit物联网平台

ThingsKit物联网平台

欢迎加入ThingsBoard技术交流群

ThingsKit物联网平台

这里可复制Q群号:69998183

关注“云腾五洲”:获取二开ThingsBoard物联网平台演示

ThingsKit物联网平台

TK物联网平台:ThingsKit物联网平台




# ThingsBoard源码分析5-如何接收MQTT连接

## 1. MQTT server

需要接收设备的MQTT连接,那么thingsboard中必然有MQTT服务器,MQTT服务器创建的类是`MqttTransportService`;

基于netty的mqtt server,添加了`MqttTransportServerInitializer`的处理类,并向`ChannelPipeline`添加了netty的`MqttDecoder`和`MqttEncoder`让我们可以忽略MQTT消息的编解码工作,重要的是添加了`MqttTransportHandler`;

#  2. MqttTransportHandler处理连接

**此例中,我们首先需要创建租户,租户管理员,并添加设备,使用MQTT Box模拟硬件设备,拷贝ACCESS TOKEN做为MQTT Box的Username开始连接我们的thingsboard后台**

![mqtt消息处理流程](https://cdn.iotschool.com/photo/2020/00e26598-e91a-4a08-b557-18b204bec6c9.png?x-oss-process=image/resize,w_1920)

 如果图片看不清楚,请点击:

- 标准:https://cdn.iotschool.com/photo/2020/00e26598-e91a-4a08-b557-18b204bec6c9.png?x-oss-process=image/resize,w_1920
- 高清:https://p.pstatp.com/origin/137b60001339a846253dd

由于没有使用ssl,收到连接请求以后,便会调用

```java
private void processAuthTokenConnect(ChannelHandlerContext ctx, MqttConnectMessage msg) {
    String userName = msg.payload().userName();
    log.info("[{}] Processing connect msg for client with user name: {}!", sessionId, userName);
    if (StringUtils.isEmpty(userName)) {
        ctx.writeAndFlush(createMqttConnAckMsg(CONNECTION_REFUSED_BAD_USER_NAME_OR_PASSWORD));
        ctx.close();
    } else {
        //取出userName,构造protobuf的类(方便传输与解析),交给transportService处理。此时会使用到源码解析第三篇DefaultTransportService的解析的相关信息了解process的处理。参阅下方①的详细解析。
        transportService.process(ValidateDeviceTokenRequestMsg.newBuilder().setToken(userName).build(),
                new TransportServiceCallback<ValidateDeviceCredentialsResponseMsg>() {
                    @Override
                    public void onSuccess(ValidateDeviceCredentialsResponseMsg msg) {
                        onValidateDeviceResponse(msg, ctx);
                    }

                    @Override
                    public void onError(Throwable e) {
                        log.trace("[{}] Failed to process credentials: {}", address, userName, e);
                        ctx.writeAndFlush(createMqttConnAckMsg(MqttConnectReturnCode.CONNECTION_REFUSED_SERVER_UNAVAILABLE));
                        ctx.close();
                    }
                });
    }
}
  1. DefaultTransportServiceprocess方法构造了异步任务,成功调用onSuccessConsumer,失败调用onFailureConsumer

  2. 将验证用户的任务交由transportApiRequestTemplate.send

public ListenableFuture<Response> send(Request request) {
    if (tickSize > maxPendingRequests) {
        return Futures.immediateFailedFuture(new RuntimeException("Pending request map is full!"));
    }
    UUID requestId = UUID.randomUUID();
    request.getHeaders().put(REQUEST_ID_HEADER, uuidToBytes(requestId));
    //由第三篇文章的分析得出,此topic时tb_transport.api.responses.localHostName
    request.getHeaders().put(RESPONSE_TOPIC_HEADER, stringToBytes(responseTemplate.getTopic()));
    request.getHeaders().put(REQUEST_TIME, longToBytes(System.currentTimeMillis()));
    //参阅第一篇基础知识的介绍,来自谷歌的库,settableFuture,可设置结果的完成
    SettableFuture<Response> future = SettableFuture.create();
    ResponseMetaData<Response> responseMetaData = new ResponseMetaData<>(tickTs + maxRequestTimeout, future);
    //将future放到pendingRequests中②
    pendingRequests.putIfAbsent(requestId, responseMetaData);
    log.trace("[{}] Sending request, key [{}], expTime [{}]", requestId, request.getKey(), responseMetaData.expTime);
    //将消息发送给消息队列topic是tb_transport.api.requests
    requestTemplate.send(TopicPartitionInfo.builder().topic(requestTemplate.getDefaultTopic()).build(), request, new TbQueueCallback() {
        @Override
        public void onSuccess(TbQueueMsgMetadata metadata) {
            log.trace("[{}] Request sent: {}", requestId, metadata);
        }

        @Override
        public void onFailure(Throwable t) {
            pendingRequests.remove(requestId);
            future.setException(t);
        }
    });
    return future;
}
  1. 根据第三篇TbCoreTransportApiService的分析,我们发现DefaultTbQueueResponseTemplate的成员变量requestTemplateconsumer刚好是订阅的tb_transport.api.requests的消息:
......
requests.forEach(request -> {
    long currentTime = System.currentTimeMillis();
    long requestTime = bytesToLong(request.getHeaders().get(REQUEST_TIME));
    if (requestTime + requestTimeout >= currentTime) {
        byte[] requestIdHeader = request.getHeaders().get(REQUEST_ID_HEADER);
        if (requestIdHeader == null) {
            log.error("[{}] Missing requestId in header", request);
            return;
        }
       	//获取response的topic,可以做到消息从哪来,处理好以后回哪里去,此时的topic是tb_transport.api.responses.localHostName
        byte[] responseTopicHeader = request.getHeaders().get(RESPONSE_TOPIC_HEADER);
        if (responseTopicHeader == null) {
            log.error("[{}] Missing response topic in header", request);
            return;
        }
        UUID requestId = bytesToUuid(requestIdHeader);
        String responseTopic = bytesToString(responseTopicHeader);
        try {
            pendingRequestCount.getAndIncrement();
            //调用handler进行处理消息
            AsyncCallbackTemplate.withCallbackAndTimeout(handler.handle(request),
                    response -> {
                        pendingRequestCount.decrementAndGet();
                        response.getHeaders().put(REQUEST_ID_HEADER, uuidToBytes(requestId));
                        //handler.hande处理的结果返回给发送方topic是tb_transport.api.responses.localHostName
                        responseTemplate.send(TopicPartitionInfo.builder().topic(responseTopic).build(), response, null);
                    },
                    e -> {
                        pendingRequestCount.decrementAndGet();
                        if (e.getCause() != null && e.getCause() instanceof TimeoutException) {
                            log.warn("[{}] Timeout to process the request: {}", requestId, request, e);
                        } else {
                            log.trace("[{}] Failed to process the request: {}", requestId, request, e);
                        }
                    },
                    requestTimeout,
                    timeoutExecutor,
                    callbackExecutor);
          .......
  1. 具体验证逻辑:
@Override
public ListenableFuture<TbProtoQueueMsg<TransportApiResponseMsg>> handle(TbProtoQueueMsg<TransportApiRequestMsg> tbProtoQueueMsg) {
    TransportApiRequestMsg transportApiRequestMsg = tbProtoQueueMsg.getValue();
    // protobuf构造的类中判定是否包含需要验证的信息块
    if (transportApiRequestMsg.hasValidateTokenRequestMsg()) {
        ValidateDeviceTokenRequestMsg msg = transportApiRequestMsg.getValidateTokenRequestMsg();
        //调用validateCredentials,具体内容就是查询deviceInfo,并将结果交由第二个Function进行进一步处理
        return Futures.transform(validateCredentials(msg.getToken(), DeviceCredentialsType.ACCESS_TOKEN), value -> new TbProtoQueueMsg<>(tbProtoQueueMsg.getKey(), value, tbProtoQueueMsg.getHeaders()), MoreExecutors.directExecutor());
    } 
  ......
  1. 当通过设备的acess token找到了deviceInfo,便会通过消息中间件将DeviceInfo发出来,topic是tb_transport.api.responses.localHostName,在第三篇的分析中,DefaultTransportServicetransportApiRequestTemplate即订阅此topic:
List<Response> responses = responseTemplate.poll(pollInterval);
if (responses.size() > 0) {
    log.trace("Polling responses completed, consumer records count [{}]", responses.size());
} else {
    continue;
}
responses.forEach(response -> {
    byte[] requestIdHeader = response.getHeaders().get(REQUEST_ID_HEADER);
    UUID requestId;
    if (requestIdHeader == null) {
        log.error("[{}] Missing requestId in header and body", response);
    } else {
        requestId = bytesToUuid(requestIdHeader);
        log.trace("[{}] Response received: {}", requestId, response);
        //参见上②,将验证的future放入到pendingRequests中,现在通过设置的requestId取出来
        ResponseMetaData<Response> expectedResponse = pendingRequests.remove(requestId);
        if (expectedResponse == null) {
            log.trace("[{}] Invalid or stale request", requestId);
        } else {
            //设置settableFuture的结果
            expectedResponse.future.set(response);
        }
    }
......
  1. DefaultTransportServiceprocess异步请求获得了返回的结果,此时调用onSuccess回调,即调用MqttTransportHandleronValidateDeviceResponse
private void onValidateDeviceResponse(ValidateDeviceCredentialsResponseMsg msg, ChannelHandlerContext ctx) {
    if (!msg.hasDeviceInfo()) {
        ctx.writeAndFlush(createMqttConnAckMsg(CONNECTION_REFUSED_NOT_AUTHORIZED));
        ctx.close();
    } else {
        deviceSessionCtx.setDeviceInfo(msg.getDeviceInfo());
        sessionInfo = SessionInfoProto.newBuilder()
                .setNodeId(context.getNodeId())
                .setSessionIdMSB(sessionId.getMostSignificantBits())
                .setSessionIdLSB(sessionId.getLeastSignificantBits())
                .setDeviceIdMSB(msg.getDeviceInfo().getDeviceIdMSB())
                .setDeviceIdLSB(msg.getDeviceInfo().getDeviceIdLSB())
                .setTenantIdMSB(msg.getDeviceInfo().getTenantIdMSB())
                .setTenantIdLSB(msg.getDeviceInfo().getTenantIdLSB())
                .setDeviceName(msg.getDeviceInfo().getDeviceName())
                .setDeviceType(msg.getDeviceInfo().getDeviceType())
                .build();
        //创建SessionEvent.OPEN的消息,调用sendToDeviceActor方法,包含sessionInfo
        transportService.process(sessionInfo, DefaultTransportService.getSessionEventMsg(SessionEvent.OPEN), new TransportServiceCallback<Void>() {
           .......
  1. sendToDeviceActor的实现:
protected void sendToDeviceActor(TransportProtos.SessionInfoProto sessionInfo, TransportToDeviceActorMsg toDeviceActorMsg, TransportServiceCallback<Void> callback) {
    //创建tpi,此时会选择一个固定的partition Id,组成的topic是tb_core, fullTopicName是tb_core.(int) 如: tb_core.1
    TopicPartitionInfo tpi = partitionService.resolve(ServiceType.TB_CORE, getTenantId(sessionInfo), getDeviceId(sessionInfo));
......
    //使用tbCoreMsgProducer发送到消息队列,设置了toDeviceActorMsg
    tbCoreMsgProducer.send(tpi,
            new TbProtoQueueMsg<>(getRoutingKey(sessionInfo),
                    ToCoreMsg.newBuilder().setToDeviceActorMsg(toDeviceActorMsg).build()), callback != null ?
                    new TransportTbQueueCallback(callback) : null);
}
  1. 此时第二篇基于DefaultTbCoreConsumerService可以知道DefaultTbCoreConsumerService 的消费者订阅该主题的消息:
try {
    ToCoreMsg toCoreMsg = msg.getValue();
    if (toCoreMsg.hasToSubscriptionMgrMsg()) {
        log.trace("[{}] Forwarding message to subscription manager service {}", id, toCoreMsg.getToSubscriptionMgrMsg());
        forwardToSubMgrService(toCoreMsg.getToSubscriptionMgrMsg(), callback);
    } else if (toCoreMsg.hasToDeviceActorMsg()) {
        log.trace("[{}] Forwarding message to device actor {}", id, toCoreMsg.getToDeviceActorMsg());
        //交由此方法进行处理
        forwardToDeviceActor(toCoreMsg.getToDeviceActorMsg(), callback);
    }
  1. forwardToDeviceActor对消息的处理

    private void forwardToDeviceActor(TransportToDeviceActorMsg toDeviceActorMsg, TbCallback callback) {
        if (statsEnabled) {
            stats.log(toDeviceActorMsg);
        }
        //创建type为TRANSPORT_TO_DEVICE_ACTOR_MSG的消息,并交给AppActor处理
        actorContext.tell(new TransportToDeviceActorMsgWrapper(toDeviceActorMsg, callback));
    }
    
  2. 通过第四篇的总结3,我们可以直接去看AppActordoProcess方法对此类型消息的处理,跟踪发现AppActor将消息转给了TenantActor, TenantActor创建了DeviceActor,并将消息转给了DeviceActor;

  3. DeviceActor拿到此类型的消息,进行了如下的处理:

    protected boolean doProcess(TbActorMsg msg) {
        switch (msg.getMsgType()) {
            case TRANSPORT_TO_DEVICE_ACTOR_MSG:
                //包装成TransportToDeviceActorMsgWrapper交由processor处理,并继续调用processSessionStateMsgs
                processor.process(ctx, (TransportToDeviceActorMsgWrapper) msg);
                break;
            case DEVICE_ATTRIBUTES_UPDATE_TO_DEVICE_ACTOR_MSG:
    
  4. processSessionStateMsgs的处理:

    private void processSessionStateMsgs(SessionInfoProto sessionInfo, SessionEventMsg msg) {
        UUID sessionId = getSessionId(sessionInfo);
        if (msg.getEvent() == SessionEvent.OPEN) {
         .....
            sessions.put(sessionId, new SessionInfoMetaData(new SessionInfo(SessionType.ASYNC, sessionInfo.getNodeId())));
            if (sessions.size() == 1) {
               // 将调用pushRuleEngineMessage(stateData, CONNECT_EVENT);
                reportSessionOpen();
            }
            //将调用pushRuleEngineMessage(stateData, ACTIVITY_EVENT);
            systemContext.getDeviceStateService().onDeviceActivity(deviceId, System.currentTimeMillis());
            dumpSessions();
        }
    ....
    
  5. 由于CONNECT_EVENTACTIVITY_EVENT仅仅类型不同,以下暂时只分析CONNECT_EVENT

    public void pushMsgToRuleEngine(TenantId tenantId, EntityId entityId, TbMsg tbMsg, TbQueueCallback callback) {
        if (tenantId.isNullUid()) {
            if (entityId.getEntityType().equals(EntityType.TENANT)) {
                tenantId = new TenantId(entityId.getId());
            } else {
                log.warn("[{}][{}] Received invalid message: {}", tenantId, entityId, tbMsg);
                return;
            }
        }
        //和第7点类似,创建的tpi的fullTopicName的例子 tb_rule_engine.main.1
        TopicPartitionInfo tpi = partitionService.resolve(ServiceType.TB_RULE_ENGINE, tenantId, entityId);
        log.trace("PUSHING msg: {} to:{}", tbMsg, tpi);
        ToRuleEngineMsg msg = ToRuleEngineMsg.newBuilder()
                .setTenantIdMSB(tenantId.getId().getMostSignificantBits())
                .setTenantIdLSB(tenantId.getId().getLeastSignificantBits())
                .setTbMsg(TbMsg.toByteString(tbMsg)).build();
        producerProvider.getRuleEngineMsgProducer().send(tpi, new TbProtoQueueMsg<>(tbMsg.getId(), msg), callback);
        toRuleEngineMsgs.incrementAndGet();
    }
    
  6. 通过第二篇的分析DefaultTbRuleEngineConsumerService订阅了此topic: tb_rule_engine.main.1的消息,收到消息以后,调用forwardToRuleEngineActor方法,包裹成QUEUE_TO_RULE_ENGINE_MSG类型的消息,交由AppActor进行分发处理;

  7. AppActor交给TenantActor处理,TenantActor交给RootRuleChain处理,RuleChainActor交给firstRuleNode处理,也就是某一个RuleNodeActor;

  8. 打开前端RULE CHAINS的界面,会发现,MESSAGE TYPE SWITCH是接收input的第一个节点,其实数据库的配置中,rule_chain表中配置的first_rule_node_id就是TbMsgTypeSwitchNode

  9. 进入TbMsgTypeSwitchNodeonMsg方法(实际上所有的ruleNode处理消息的方法都是onMsg),发现根据messageType(此时是CONNECT_EVENT)定义了relationtype并调用ctx.tellNext(msg, relationType);

  10. 此时DefaultTbContext创建一个RuleNodeToRuleChainTellNextMsg,类型是RULE_TO_RULE_CHAIN_TELL_NEXT_MSG,交给RuleChainActor处理;

  11. 接下来将会进入到RuleChainActorMessageProcessoronTellNext方法:

    private void onTellNext(TbMsg msg, RuleNodeId originatorNodeId, Set<String> relationTypes, String failureMessage) {
        try {
            checkActive(msg);
            //消息来源
            EntityId entityId = msg.getOriginator();
            //创建一个tpi,可能会使用
            TopicPartitionInfo tpi = systemContext.resolve(ServiceType.TB_RULE_ENGINE, msg.getQueueName(), tenantId, entityId);
           //查询有关系的RuleNode,其实就是从relation表中查询,该消息来源的id,relation_type和在TbMsgTypeSwitchNode定义的relationType一直的节点id,如上Connect Event就没有找到相应的relation的RuleNodeId
            List<RuleNodeRelation> relations = nodeRoutes.get(originatorNodeId).stream()
                    .filter(r -> contains(relationTypes, r.getType()))
                    .collect(Collectors.toList());
            int relationsCount = relations.size();
           //Connect Event就没有找到相应的relation的RuleNodeId,消息通过规则引擎,已经处理完成
            if (relationsCount == 0) {
                log.trace("[{}][{}][{}] No outbound relations to process", tenantId, entityId, msg.getId());
                if (relationTypes.contains(TbRelationTypes.FAILURE)) {
                    RuleNodeCtx ruleNodeCtx = nodeActors.get(originatorNodeId);
                    if (ruleNodeCtx != null) {
                        msg.getCallback().onFailure(new RuleNodeException(failureMessage, ruleChainName, ruleNodeCtx.getSelf()));
                    } else {
                        log.debug("[{}] Failure during message processing by Rule Node [{}]. Enable and see debug events for more info", entityId, originatorNodeId.getId());
                        msg.getCallback().onFailure(new RuleEngineException("Failure during message processing by Rule Node [" + originatorNodeId.getId().toString() + "]"));
                    }
                } else {
                    msg.getCallback().onSuccess();
                }
             //举例:Post telemetry的type可以找到相应的ruleNode,实现类是:TbMsgTimeseriesNode,那么此消息将会交给TbMsgTimeseriesNode处理
            } else if (relationsCount == 1) {
                for (RuleNodeRelation relation : relations) {
                    log.trace("[{}][{}][{}] Pushing message to single target: [{}]", tenantId, entityId, msg.getId(), relation.getOut());
                    pushToTarget(tpi, msg, relation.getOut(), relation.getType());
                }
            } else {
                MultipleTbQueueTbMsgCallbackWrapper callbackWrapper = new MultipleTbQueueTbMsgCallbackWrapper(relationsCount, msg.getCallback());
                log.trace("[{}][{}][{}] Pushing message to multiple targets: [{}]", tenantId, entityId, msg.getId(), relations);
                for (RuleNodeRelation relation : relations) {
                    EntityId target = relation.getOut();
                    putToQueue(tpi, msg, callbackWrapper, target);
                }
            }
        } catch (RuleNodeException rne) {
            msg.getCallback().onFailure(rne);
        } catch (Exception e) {
            msg.getCallback().onFailure(new RuleEngineException("onTellNext - " + e.getMessage()));
        }
    }
    

    What's more:

    如上面的举例,比如是遥测数据Post telemetry,将会使用TbMsgTimeseriesNodeonMsg做进一步的处理,比如存储数据,再通过webSocket进行数据的更新如果有webSocket的session的话,或者其他通知消息,就不详细展开了。

总结:

  1. 处理MQTT的连接其实就是走完了整个规则引擎的逻辑,其他类型的消息,比如遥测数据,属性更新,RPC请求发送与接收,大体流程大同小异;

  2. 在处理消息流向的时候,我们一定要清楚其订阅或者发布的主题是什么,这样我们才不会丢失方向;

  3. Actor的模型就是根据消息的类型,使用AppActor进行一步步的分发,最终交由合适的RuleNode进行处理;

  4. Protobuf类型的消息容易序列化传输与解析,所以在thingsboard中大量使用,但是生成的类可读性不是很高,可以选择直接读queue.proto文件,对类有感性的认知。

    ​ 由于作者水平有限,只是梳理了大致的流程,文章难免出现纰漏,望谅解并指正。

posted @ 2020-10-01 17:40  ThingsKit物联网平台  阅读(1820)  评论(0编辑  收藏  举报
物联网平台