SVD分解 opencv实现
头文件
#ifndef DEBUG_LRN_SVD_H
#define DEBUG_LRN_SVD_H
#include <cmath>
#include <iostream>
#include <string>
#include <vector>
#include <opencv2/opencv.hpp>
#include </usr/local/include/eigen3/Eigen/Dense>
using namespace std;
using namespace cv;
int test_SVD();
int opencv_svd(vector<vector<float>>& vec);
int eigen_svd(vector<vector<float>>& vec);
int cpp_svd(vector<vector<float>>& vec);
void print_matrix(const vector<vector<float>>& vec);
#endif //DEBUG_LRN_SVD_H
源文件
#include "svd.h"
void print_matrix(const vector<vector<float>>& vec){
if(vec.empty()){
return;
}
for ( auto row: vec){
if(row.empty()){
return;
}
for ( auto elem: row){
cout << elem << ", ";
}
cout << endl;
}
cout << endl;
}
int opencv_svd(vector<vector<float>>& vec){
cout << "source matrix:" << endl;
print_matrix(vec);
cout << "opencv singular value decomposition:" << endl;
const auto rows = (int)vec.size();
const auto cols = (int)vec[0].size();
cv::Mat mat(rows, cols, CV_32FC1);
for (int y = 0; y < rows; ++y) {
for (int x = 0; x < cols; ++x) {
mat.at<float>(y, x) = vec.at(y).at(x);
}
}
cv::Mat matD, matU, matVt;
cv::SVD::compute(mat, matD, matU, matVt, 4);
cout << "opencv singular values:" << endl;
cout << matD << endl;
cout << "left singular vectors:" << endl;
cout << matU << endl;
cout << "transposed matrix of right singular values:" << endl;
cout << matVt << endl;
// cv::Mat matUt, matV;
// cv::transpose(matU, matUt);
// cv::transpose(matVt, matV);
//
// cout << "verify if the result is correct:" << endl;
// cv::Mat reconMatD = matUt * mat * matV;
// cout << reconMatD << endl;
return 0;
}
int eigen_svd(vector<vector<float>>& vec){
// cout << "source matrix:" << endl;
// print_matrix(vec);
cout << "opencv singular value decomposition:" << endl;
const auto rows = (int)vec.size();
const auto cols = (int)vec[0].size();
std::vector<float> vec_;
for (int i = 0; i < rows; ++i) {
vec_.insert(vec_.begin() + i * cols, vec[i].begin(), vec[i].end());
}
Eigen::Map<Eigen::Matrix<float, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>> m(vec_.data(), rows, cols);
cout << "source matrix:" << endl;
std::cout << m << std::endl;
Eigen::JacobiSVD<Eigen::MatrixXf> svd(m, Eigen::ComputeFullV | Eigen::ComputeFullU); // ComputeThinU | ComputeThinV
Eigen::MatrixXf singular_values = svd.singularValues();
Eigen::MatrixXf left_singular_vectors = svd.matrixU();
Eigen::MatrixXf right_singular_vectors = svd.matrixV();
cout << "eigen singular values:" << singular_values << endl;
cout << "left singular vectors:" << left_singular_vectors << endl;
cout << "right singular vectors:" << right_singular_vectors << endl;
return 0;
}
// ================================= 矩阵奇异值分解 =================================
template<typename _Tp>
static void JacobiSVD(std::vector<std::vector<_Tp>>& At,
std::vector<std::vector<_Tp>>& _W, std::vector<std::vector<_Tp>>& Vt)
{
double minval = FLT_MIN;
auto eps = (_Tp)(FLT_EPSILON * 2);
const int m = At[0].size();
const auto n = (int)_W.size();
const int n1 = m; // urows
std::vector<double> W(_W.size(), 0.);
for (int i = 0; i < n; i++) {
double sd{0.};
for (int k = 0; k < m; k++) {
_Tp t = At[i][k];
sd += (double)t*t;
}
W[i] = sd;
for (int k = 0; k < n; k++)
Vt[i][k] = 0;
Vt[i][i] = 1;
}
int max_iter = std::max(m, 30);
for (int iter = 0; iter < max_iter; iter++) {
bool changed = false;
_Tp c, s;
for (int i = 0; i < n - 1; i++) {
for (int j = i + 1; j < n; j++) {
_Tp *Ai = At[i].data(), *Aj = At[j].data();
double a = W[i], p = 0, b = W[j];
for (int k = 0; k < m; k++)
p += (double)Ai[k] * Aj[k];
if (std::abs(p) <= eps * std::sqrt((double)a*b))
continue;
p *= 2;
double beta = a - b, gamma = hypot((double)p, beta);
if (beta < 0) {
double delta = (gamma - beta)*0.5;
s = (_Tp)std::sqrt(delta / gamma);
c = (_Tp)(p / (gamma*s * 2));
} else {
c = (_Tp)std::sqrt((gamma + beta) / (gamma * 2));
s = (_Tp)(p / (gamma*c * 2));
}
a = b = 0;
for (int k = 0; k < m; k++) {
_Tp t0 = c*Ai[k] + s*Aj[k];
_Tp t1 = -s*Ai[k] + c*Aj[k];
Ai[k] = t0; Aj[k] = t1;
a += (double)t0*t0; b += (double)t1*t1;
}
W[i] = a; W[j] = b;
changed = true;
_Tp *Vi = Vt[i].data(), *Vj = Vt[j].data();
for (int k = 0; k < n; k++) {
_Tp t0 = c*Vi[k] + s*Vj[k];
_Tp t1 = -s*Vi[k] + c*Vj[k];
Vi[k] = t0; Vj[k] = t1;
}
}
}
if (!changed)
break;
}
for (int i = 0; i < n; i++) {
double sd{ 0. };
for (int k = 0; k < m; k++) {
_Tp t = At[i][k];
sd += (double)t*t;
}
W[i] = std::sqrt(sd);
}
for (int i = 0; i < n - 1; i++) {
int j = i;
for (int k = i + 1; k < n; k++) {
if (W[j] < W[k])
j = k;
}
if (i != j) {
std::swap(W[i], W[j]);
for (int k = 0; k < m; k++)
std::swap(At[i][k], At[j][k]);
for (int k = 0; k < n; k++)
std::swap(Vt[i][k], Vt[j][k]);
}
}
for (int i = 0; i < n; i++)
_W[i][0] = (_Tp)W[i];
srand(time(nullptr));
for (int i = 0; i < n1; i++) {
double sd = i < n ? W[i] : 0;
for (int ii = 0; ii < 100 && sd <= minval; ii++) {
// if we got a zero singular value, then in order to get the corresponding left singular vector
// we generate a random vector, project it to the previously computed left singular vectors,
// subtract the projection and normalize the difference.
const auto val0 = (_Tp)(1. / m);
for (int k = 0; k < m; k++) {
unsigned long int rng = rand() % 4294967295; // 2^32 - 1
_Tp val = (rng & 256) != 0 ? val0 : -val0;
At[i][k] = val;
}
for (int iter = 0; iter < 2; iter++) {
for (int j = 0; j < i; j++) {
sd = 0;
for (int k = 0; k < m; k++)
sd += At[i][k] * At[j][k];
_Tp asum = 0;
for (int k = 0; k < m; k++) {
auto t = (_Tp)(At[i][k] - sd*At[j][k]);
At[i][k] = t;
asum += std::abs(t);
}
asum = asum > eps * 100 ? 1 / asum : 0;
for (int k = 0; k < m; k++)
At[i][k] *= asum;
}
}
sd = 0;
for (int k = 0; k < m; k++) {
_Tp t = At[i][k];
sd += (double)t*t;
}
sd = std::sqrt(sd);
}
_Tp s = (_Tp)(sd > minval ? 1 / sd : 0.);
for (int k = 0; k < m; k++)
At[i][k] *= s;
}
}
// matSrc为原始矩阵,支持非方阵,matD存放奇异值,matU存放左奇异向量,matVt存放转置的右奇异向量
template<typename _Tp>
int svd(const std::vector<std::vector<_Tp>>& matSrc,
std::vector<std::vector<_Tp>>& matD, std::vector<std::vector<_Tp>>& matU, std::vector<std::vector<_Tp>>& matVt)
{
int m = matSrc.size();
int n = matSrc[0].size();
for (const auto& sz : matSrc) {
if (n != sz.size()) {
fprintf(stderr, "matrix dimension dismatch\n");
return -1;
}
}
bool at = false;
if (m < n) {
std::swap(m, n);
at = true;
}
matD.resize(n);
for (int i = 0; i < n; ++i) {
matD[i].resize(1, (_Tp)0);
}
matU.resize(m);
for (int i = 0; i < m; ++i) {
matU[i].resize(m, (_Tp)0);
}
matVt.resize(n);
for (int i = 0; i < n; ++i) {
matVt[i].resize(n, (_Tp)0);
}
std::vector<std::vector<_Tp>> tmp_u = matU, tmp_v = matVt;
std::vector<std::vector<_Tp>> tmp_a, tmp_a_;
if (!at)
transpose(matSrc, tmp_a);
else
tmp_a = matSrc;
if (m == n) {
tmp_a_ = tmp_a;
} else {
tmp_a_.resize(m);
for (int i = 0; i < m; ++i) {
tmp_a_[i].resize(m, (_Tp)0);
}
for (int i = 0; i < n; ++i) {
tmp_a_[i].assign(tmp_a[i].begin(), tmp_a[i].end());
}
}
JacobiSVD(tmp_a_, matD, tmp_v);
if (!at) {
transpose(tmp_a_, matU);
matVt = tmp_v;
} else {
// transpose(tmp_v, matVt);
// matU = tmp_a_;
}
return 0;
}
int cpp_svd(vector<vector<float>>& vec){
std::vector<std::vector<float>> matD, matU, matVt;
if (svd(vec, matD, matU, matVt) != 0) {
fprintf(stderr, "C++ implement singular value decomposition fail\n");
return -1;
}
// cout << "singular values:" << endl;
// print_matrix(matD);
// cout << "left singular vectors" << endl;
// print_matrix(matU);
// cout << "transposed matrix of right singular values:" << endl;
// print_matrix(matVt);
return 0;
}
int test_SVD()
{
std::vector<std::vector<float>> vec{ { 0.68f, 0.597f, 0.2752f, 0.68f, 0.597f, 0.2752f },
{ -0.211f, 0.823f, -0.9273f, 0.68f, 0.597f, 0.2752f },
{ 0.566f, -0.605f, 0.1260f, 0.68f, 0.597f, 0.2752f } };
auto time = (double)getTickCount();
const int repeat = 100;
for(int i = 0;i<repeat;i++){
opencv_svd(vec); // 对比下来这个最快
}
auto time2 = ((double)getTickCount() - time) / (repeat * getTickFrequency());
for(int i = 0;i<repeat;i++){
eigen_svd(vec);
}
auto time3 = ((double)getTickCount() - time2) / (repeat * getTickFrequency());
for(int i = 0;i<repeat;i++){
cpp_svd(vec);
}
auto time4 = ((double)getTickCount() - time3) / (repeat * getTickFrequency());
time = 0;
return 0;
}