背包问题规律
转载自:https://leetcode-cn.com/problems/combination-sum-iv/solution/xi-wang-yong-yi-chong-gui-lu-gao-ding-bei-bao-wen-/
组合问题公式
dp[i] += dp[i-num]
True、False问题公式
dp[i] = dp[i] or dp[i-num]
最大最小问题公式
dp[i] = min(dp[i], dp[i-num]+1)或者dp[i] = max(dp[i], dp[i-num]+1)
以上三组公式是解决对应问题的核心公式。
拿到问题后,需要做到以下几个步骤:
1.分析是否为背包问题。
2.是以上三种背包问题中的哪一种。
3.是0-1背包问题还是完全背包问题。也就是题目给的nums数组中的元素是否可以重复使用。
4.如果是组合问题,是否需要考虑元素之间的顺序。需要考虑顺序有顺序的解法,不需要考虑顺序又有对应的解法。
接下来讲一下背包问题的判定
背包问题具备的特征:给定一个target,target可以是数字也可以是字符串,再给定一个数组nums,nums中装的可能是数字,也可能是字符串,问:能否使用nums中的元素做各种排列组合得到target。
背包问题技巧:
1.如果是0-1背包,即数组中的元素不可重复使用,nums放在外循环,target在内循环,且内循环倒序;
for num in nums: for i in range(target, nums-1, -1):
2.如果是完全背包,即数组中的元素可重复使用,nums放在外循环,target在内循环。且内循环正序。
for num in nums: for i in range(nums, target+1):
3.如果组合问题需考虑元素之间的顺序,需将target放在外循环,将nums放在内循环。
for i in range(1, target+1): for num in nums: