重建二叉树

一、关于Java中的Arrays.copyOfRange()方法

要使用这个方法,首先要import java.util.*;

Arrays.copyOfRange(T[ ] original,int from,int to)

将一个原始的数组original,从小标from开始复制,复制到小标to,生成一个新的数组。

注意这里包括下标from,不包括上标to。

二、重建二叉树

题目来自牛客网:

  输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树。假设输入的前序遍历和中序遍历的结果中都不含重复的数字。例如输入前序遍历序列{1,2,4,7,3,5,6,8}和中序遍历序列{4,7,2,1,5,3,8,6},则重建二叉树并返回。

import java.util.*;
/**
 * Definition for binary tree
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
public class Solution {
    public TreeNode reConstructBinaryTree(int [] pre,int [] in) {
        if(pre.length == 0){
            return null;
        }
        TreeNode node = new TreeNode(pre[0]);
        for(int i = 0;i < in.length; i++){
            if(pre[0] == in[i]){
                node.left = reConstructBinaryTree(Arrays.copyOfRange(pre,1,i+1),Arrays.copyOfRange(in,0,i));
                node.right = reConstructBinaryTree(Arrays.copyOfRange(pre,i+1,pre.length),Arrays.copyOfRange(in,i+1,in.length));
            }
        }
        return node;
    }
}

以上是通过递归的方法解决该问题,每一轮的查找,主要是通过前序遍历的root(pre[0]),来中序遍历中寻找到根节点(in[i]),则中序遍历中左侧为左子树,0~i。相对应本次查找的,前序遍历中左子树1~i+1。【根据Arrays.copyOfRange,不包括后续值】同理,对于每一轮的递归,它的右子树前序遍历显然是i+1~pre.length,中序遍历为i+1~in.length.这是一种通过Java中自带函数解决问题的方法,代码简洁易懂。

 

posted @ 2019-03-13 10:51  路在脚下丶  阅读(284)  评论(0编辑  收藏  举报