二值化与分段
二值化与分段
sklearn.preprocessing.Binarizer#
from sklearn.preprocessing import Binarizer
import pandas as pd
data = pd.read_csv("./data_full", index_col=0)
data
Age | Survived | Sex_female | Sex_male | Embarked_C | Embarked_Q | Embarked_S | |
---|---|---|---|---|---|---|---|
0 | 22.000000 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 1.0 |
1 | 38.000000 | 2.0 | 1.0 | 0.0 | 1.0 | 0.0 | 0.0 |
2 | 26.000000 | 2.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 |
3 | 35.000000 | 2.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 |
4 | 35.000000 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 1.0 |
... | ... | ... | ... | ... | ... | ... | ... |
884 | 25.000000 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 1.0 |
885 | 39.000000 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 |
886 | 27.000000 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 |
887 | 19.000000 | 2.0 | 0.0 | 1.0 | 1.0 | 0.0 | 0.0 |
888 | 29.699118 | 0.0 | 0.0 | 1.0 | 0.0 | 1.0 | 0.0 |
887 rows × 7 columns
data1 = data.copy()
age = data1.iloc[:,0].values.reshape(-1,1)
result = Binarizer(threshold=30).fit_transform(age)
data1.iloc[:,0] = result
data1
Age | Survived | Sex_female | Sex_male | Embarked_C | Embarked_Q | Embarked_S | |
---|---|---|---|---|---|---|---|
0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 1.0 |
1 | 1.0 | 2.0 | 1.0 | 0.0 | 1.0 | 0.0 | 0.0 |
2 | 0.0 | 2.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 |
3 | 1.0 | 2.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 |
4 | 1.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 1.0 |
... | ... | ... | ... | ... | ... | ... | ... |
884 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 1.0 |
885 | 1.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 |
886 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 |
887 | 0.0 | 2.0 | 0.0 | 1.0 | 1.0 | 0.0 | 0.0 |
888 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 1.0 | 0.0 |
887 rows × 7 columns
preprocessing.KBinsDiscretizer#
from sklearn.preprocessing import KBinsDiscretizer
data2 = data.copy()
age = data2.iloc[:,0].values.reshape(-1,1)
result2 = KBinsDiscretizer(n_bins=5,encode="ordinal",strategy="uniform").fit_transform(age)
set(result2.ravel())
{0.0, 1.0, 2.0, 3.0, 4.0}
result3 = KBinsDiscretizer(n_bins=5, encode="onehot",strategy="quantile").fit_transform(age)
result3.toarray()
array([[0., 1., 0., 0., 0.],
[0., 0., 0., 0., 1.],
[0., 1., 0., 0., 0.],
...,
[0., 1., 0., 0., 0.],
[1., 0., 0., 0., 0.],
[0., 0., 0., 1., 0.]])
作者:Hovey
出处:https://www.cnblogs.com/thankcat/p/17299251.html
版权:本作品采用「署名-非商业性使用-相同方式共享 4.0 国际」许可协议进行许可。
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· DeepSeek 开源周回顾「GitHub 热点速览」
· 物流快递公司核心技术能力-地址解析分单基础技术分享
· .NET 10首个预览版发布:重大改进与新特性概览!
· AI与.NET技术实操系列(二):开始使用ML.NET
· 单线程的Redis速度为什么快?