Loading

二值化与分段

二值化与分段

sklearn.preprocessing.Binarizer

from sklearn.preprocessing import Binarizer
import pandas as pd
data = pd.read_csv("./data_full", index_col=0)
data
Age Survived Sex_female Sex_male Embarked_C Embarked_Q Embarked_S
0 22.000000 0.0 0.0 1.0 0.0 0.0 1.0
1 38.000000 2.0 1.0 0.0 1.0 0.0 0.0
2 26.000000 2.0 1.0 0.0 0.0 0.0 1.0
3 35.000000 2.0 1.0 0.0 0.0 0.0 1.0
4 35.000000 0.0 0.0 1.0 0.0 0.0 1.0
... ... ... ... ... ... ... ...
884 25.000000 0.0 0.0 1.0 0.0 0.0 1.0
885 39.000000 0.0 1.0 0.0 0.0 0.0 1.0
886 27.000000 0.0 1.0 0.0 0.0 0.0 1.0
887 19.000000 2.0 0.0 1.0 1.0 0.0 0.0
888 29.699118 0.0 0.0 1.0 0.0 1.0 0.0

887 rows × 7 columns

data1 = data.copy()
age = data1.iloc[:,0].values.reshape(-1,1)
result = Binarizer(threshold=30).fit_transform(age)
data1.iloc[:,0] = result
data1
Age Survived Sex_female Sex_male Embarked_C Embarked_Q Embarked_S
0 0.0 0.0 0.0 1.0 0.0 0.0 1.0
1 1.0 2.0 1.0 0.0 1.0 0.0 0.0
2 0.0 2.0 1.0 0.0 0.0 0.0 1.0
3 1.0 2.0 1.0 0.0 0.0 0.0 1.0
4 1.0 0.0 0.0 1.0 0.0 0.0 1.0
... ... ... ... ... ... ... ...
884 0.0 0.0 0.0 1.0 0.0 0.0 1.0
885 1.0 0.0 1.0 0.0 0.0 0.0 1.0
886 0.0 0.0 1.0 0.0 0.0 0.0 1.0
887 0.0 2.0 0.0 1.0 1.0 0.0 0.0
888 0.0 0.0 0.0 1.0 0.0 1.0 0.0

887 rows × 7 columns

preprocessing.KBinsDiscretizer

from sklearn.preprocessing import KBinsDiscretizer
data2 = data.copy()
age = data2.iloc[:,0].values.reshape(-1,1)
result2 = KBinsDiscretizer(n_bins=5,encode="ordinal",strategy="uniform").fit_transform(age)
set(result2.ravel())
{0.0, 1.0, 2.0, 3.0, 4.0}
result3 = KBinsDiscretizer(n_bins=5, encode="onehot",strategy="quantile").fit_transform(age)
result3.toarray()
array([[0., 1., 0., 0., 0.],
       [0., 0., 0., 0., 1.],
       [0., 1., 0., 0., 0.],
       ...,
       [0., 1., 0., 0., 0.],
       [1., 0., 0., 0., 0.],
       [0., 0., 0., 1., 0.]])
posted @ 2023-04-08 21:07  ThankCAT  阅读(12)  评论(0编辑  收藏  举报