pandas 用户数据分析2
user_analysis
In [ ]:
# 加载数据,定义字段含义
import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
pd.set_option('display.float_format', lambda x: '%.3f' % x)
df = pd.read_csv("./CDNOW_master.txt", header=None,
sep="\s+", names=["user_id", "order_dt", "order_product", "order_amount"])
df.head()
Out[ ]:
user_id | order_dt | order_product | order_amount | |
---|---|---|---|---|
0 | 1 | 19970101 | 1 | 11.770 |
1 | 2 | 19970112 | 1 | 12.000 |
2 | 2 | 19970112 | 5 | 77.000 |
3 | 3 | 19970102 | 2 | 20.760 |
4 | 3 | 19970330 | 2 | 20.760 |
In [ ]:
# 将order_dt转换成时间类型,格式化时间
df["order_dt"] = pd.to_datetime(df["order_dt"], format="%Y%m%d")
In [ ]:
# 添加month列
df["month"] = df["order_dt"].values.astype("datetime64[M]")
df.head(20)
Out[ ]:
user_id | order_dt | order_product | order_amount | month | |
---|---|---|---|---|---|
0 | 1 | 1997-01-01 | 1 | 11.770 | 1997-01-01 |
1 | 2 | 1997-01-12 | 1 | 12.000 | 1997-01-01 |
2 | 2 | 1997-01-12 | 5 | 77.000 | 1997-01-01 |
3 | 3 | 1997-01-02 | 2 | 20.760 | 1997-01-01 |
4 | 3 | 1997-03-30 | 2 | 20.760 | 1997-03-01 |
5 | 3 | 1997-04-02 | 2 | 19.540 | 1997-04-01 |
6 | 3 | 1997-11-15 | 5 | 57.450 | 1997-11-01 |
7 | 3 | 1997-11-25 | 4 | 20.960 | 1997-11-01 |
8 | 3 | 1998-05-28 | 1 | 16.990 | 1998-05-01 |
9 | 4 | 1997-01-01 | 2 | 29.330 | 1997-01-01 |
10 | 4 | 1997-01-18 | 2 | 29.730 | 1997-01-01 |
11 | 4 | 1997-08-02 | 1 | 14.960 | 1997-08-01 |
12 | 4 | 1997-12-12 | 2 | 26.480 | 1997-12-01 |
13 | 5 | 1997-01-01 | 2 | 29.330 | 1997-01-01 |
14 | 5 | 1997-01-14 | 1 | 13.970 | 1997-01-01 |
15 | 5 | 1997-02-04 | 3 | 38.900 | 1997-02-01 |
16 | 5 | 1997-04-11 | 3 | 45.550 | 1997-04-01 |
17 | 5 | 1997-05-31 | 3 | 38.710 | 1997-05-01 |
18 | 5 | 1997-06-16 | 2 | 26.140 | 1997-06-01 |
19 | 5 | 1997-07-22 | 2 | 28.140 | 1997-07-01 |
In [ ]:
# 计算所有用户购买商品的平均数量 2.410040
# 计算所有用户购买商品的平均花费 35.893648
df.describe()[["order_product", "order_amount"]]
Out[ ]:
order_product | order_amount | |
---|---|---|
count | 69659.000 | 69659.000 |
mean | 2.410 | 35.894 |
std | 2.334 | 36.282 |
min | 1.000 | 0.000 |
25% | 1.000 | 14.490 |
50% | 2.000 | 25.980 |
75% | 3.000 | 43.700 |
max | 99.000 | 1286.010 |
In [ ]:
# 用户每月花费的总金额,并绘制折线图
df.groupby(by="month")["order_amount"].sum().plot()
Out[ ]:
<AxesSubplot: xlabel='month'>
In [ ]:
# 所有用户每月的产品购买量
df.groupby(by="month")["order_product"].sum().plot()
Out[ ]:
<AxesSubplot: xlabel='month'>
In [ ]:
# 所有用户每月的消费总次数
df.groupby(by="month")["user_id"].count()
Out[ ]:
month 1997-01-01 8928 1997-02-01 11272 1997-03-01 11598 1997-04-01 3781 1997-05-01 2895 1997-06-01 3054 1997-07-01 2942 1997-08-01 2320 1997-09-01 2296 1997-10-01 2562 1997-11-01 2750 1997-12-01 2504 1998-01-01 2032 1998-02-01 2026 1998-03-01 2793 1998-04-01 1878 1998-05-01 1985 1998-06-01 2043 Name: user_id, dtype: int64
In [ ]:
# 统计每月的消费人数
df.groupby(by="month")["user_id"].nunique()
Out[ ]:
month 1997-01-01 7846 1997-02-01 9633 1997-03-01 9524 1997-04-01 2822 1997-05-01 2214 1997-06-01 2339 1997-07-01 2180 1997-08-01 1772 1997-09-01 1739 1997-10-01 1839 1997-11-01 2028 1997-12-01 1864 1998-01-01 1537 1998-02-01 1551 1998-03-01 2060 1998-04-01 1437 1998-05-01 1488 1998-06-01 1506 Name: user_id, dtype: int64
In [ ]:
# 用户消费总金额
df.groupby(by="user_id")["order_amount"].sum()
Out[ ]:
user_id 1 11.770 2 89.000 3 156.460 4 100.500 5 385.610 ... 23566 36.000 23567 20.970 23568 121.700 23569 25.740 23570 94.080 Name: order_amount, Length: 23570, dtype: float64
In [ ]:
# 用户消费总次数
df.groupby(by="user_id")["order_amount"].count()
Out[ ]:
user_id 1 1 2 2 3 6 4 4 5 11 .. 23566 1 23567 1 23568 3 23569 1 23570 2 Name: order_amount, Length: 23570, dtype: int64
In [ ]:
# 用户消费金额和消费次数的散点图
# 用户消费金额
money = df.groupby(by="user_id")["order_amount"].sum()
# 用户消费次数
times = df.groupby(by="user_id")["order_product"].count()
# 绘图
plt.scatter(times, money)
Out[ ]:
<matplotlib.collections.PathCollection at 0x25588bbaed0>
In [ ]:
# 各个用户消费总金额的直方分布图(消费金额在1000之内的分布)
df.groupby(by='user_id').sum().query("order_amount < 1000")["order_amount"].hist()
C:\Users\chenh\AppData\Local\Temp\ipykernel_22864\701786761.py:2: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function. df.groupby(by='user_id').sum().query("order_amount < 1000")["order_amount"].hist()
Out[ ]:
<AxesSubplot: >
In [ ]:
In [ ]:
# 各个用户消费的总数量的直方分布图(消费商品的数量在100次之内的分布)
df.groupby(by="user_id").sum().query("order_product < 100")["order_product"].hist()
C:\Users\chenh\AppData\Local\Temp\ipykernel_22864\2679188117.py:2: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function. df.groupby(by="user_id").sum().query("order_product < 100")["order_product"].hist()
Out[ ]:
<AxesSubplot: >
第四部分: 用户消费行为分析¶
用户第一次消费的月份分布,和人数统计¶
绘制线形图
用户最后一次消费的时间分布,和人数统计¶
绘制线形图
新老客户的占比¶
消费一次为新用户
消费多次为老用户
分析出每一个用户的第一个消费和最后一次消费的时间
agg(['func1func2]):对分组后的结果进行指定聚合
分析出新老客户的消费比例
用户分层¶
分析得出每个用户的总购买量和总消费金额and最近一次消费的时间的表格rfm
RFM模型设计
R表示客户最近一次交易时间的间隔
/np.timedelta64(1,"D"):去除days。
F表示客户购买商品的总数量,F值越大,表示客户交易越频繁,反之则表示客户交易不够活跃。
M表示客户交易的金额。M值越大,表示客户价值越高,反之则表示客户价值越低。
将R,F,M作用到rfm表中
根据价值分层,将用户分为:
"重要价值客户"
"重要保持客户"
"重要挽留客户"
"重要发展客户"
"一般价值客户"
"一般保持客户"
"一般挽留客户"
"一般发展客户"
使用已有的分层模型rfm_func
In [ ]:
# 用户第一次消费的月份统计,和人数统计,绘制折线图
first_con = df.groupby(by="user_id")["month"].min().value_counts().plot()
In [ ]:
# 用户最后一次消费的月份统计和人数统计,绘制折线图
df.groupby(by="user_id")["month"].max().value_counts().plot()
Out[ ]:
<AxesSubplot: >
In [ ]:
# # 新老用户占比
# 消费一次新用户,消费多次老用户
# 如何获知用户是否为第一次消费? 可以根据用户的消费时间进行判定?
# 如果用户的第一次消费时间和最后一次消费时间一样,则该用户只消费了一次为新用户,否则为老用户
new_old_con_df = df.groupby(by="user_id")["order_dt"].agg(["min","max"])
new_old = new_old_con_df["min"] == new_old_con_df["max"].values
new = new_old.value_counts()[True]
old = new_old.value_counts()[False]
new_proportion = new / (new + old)
old_proportion = old / (new + old)
"老用户占比:{:.2f}%".format(old_proportion*100),"新用户占比:{:.2f}%".format(new_proportion*100)
Out[ ]:
('老用户占比:48.86%', '新用户占比:51.14%')
In [ ]:
# 分析得出每个用户的总购买量和总消费金额and最近一次消费的时间的表格rfm 用透视表
rfm = df.pivot_table(index="user_id", aggfunc={"order_product":"sum", "order_amount": "sum", "order_dt":"max"})
In [ ]:
# R表示用户最近一次交易时间的间隔
# R = df中最大的日期 - 每个用户最后一次交易的日期
# 去除days用 /np.timedelta64(1,"D")
today = df["order_dt"].max()
rfm["R"] = (today - df.groupby(by="user_id")["order_dt"].max()) / np.timedelta64(1,"D")
In [ ]:
# 删除order_dt字段
rfm.drop("order_dt", axis=1, inplace=True)
In [ ]:
# 重命名字段名为MRF
rfm.columns = ["M", "F", "R"]
rfm
Out[ ]:
M | F | R | |
---|---|---|---|
user_id | |||
1 | 11.770 | 1 | 545.000 |
2 | 89.000 | 6 | 534.000 |
3 | 156.460 | 16 | 33.000 |
4 | 100.500 | 7 | 200.000 |
5 | 385.610 | 29 | 178.000 |
... | ... | ... | ... |
23566 | 36.000 | 2 | 462.000 |
23567 | 20.970 | 1 | 462.000 |
23568 | 121.700 | 6 | 434.000 |
23569 | 25.740 | 2 | 462.000 |
23570 | 94.080 | 5 | 461.000 |
23570 rows × 3 columns
In [ ]:
# RFM模型
def rfm_func(x):
level = x.map(lambda x: "1" if x >= 0 else "0")
label = level.R + level.F + level.M
d = {
"111": "重要价值客户",
"011": "重要保持客户",
"101": "重要挽留客户",
"001": "重要发展客户",
"110": "一般价值客户",
"010": "一般保持客户",
"100": "一般挽留客户",
"000": "一般发展客户"
}
result = d[label]
return result
In [ ]:
# 将rfm_func计算的结果返回给新建label列 (lambda x: x - x.mean()).rfm_func
rfm["label"] = rfm.apply(lambda x: x - x.mean()).apply(rfm_func, axis=1)
rfm.head()
Out[ ]:
M | F | R | label | |
---|---|---|---|---|
user_id | ||||
1 | 11.770 | 1 | 545.000 | 一般挽留客户 |
2 | 89.000 | 6 | 534.000 | 一般挽留客户 |
3 | 156.460 | 16 | 33.000 | 重要保持客户 |
4 | 100.500 | 7 | 200.000 | 一般发展客户 |
5 | 385.610 | 29 | 178.000 | 重要保持客户 |
第五部分: 用户的生命周期¶
将用户划分为活跃用户和其他用户¶
统计每个用户每个月的消费次数
统计每个用户每个月是否消费,消费记录为1否则记录为0
知识点: DataFrame的apply和applymap的区别
applymap:返回df
将函数做用于DataFrame中的所有元素(elements)
apply:返回Series
apply()将一个函数作用于DataFrame中的每个行或者列
将用户按照每一个月份分成:¶
unreg:观望用户(前两月没买,第三个月才第一次买,则用户前两个月为观望用户)。
unactive:首月购买后,后序月份没有购买则在没有购买的月份中该用户的为非活用户。
new:当前月就进行首次购买的用户在当前月为新用户
active:连续月份购买的用户在这些月中为活跃用户
return:购买之后间隔n月再次购买的第一个月份为该月份的回头客
In [ ]:
# 统计每个用户每个月的消费次数 用透视 var:user_month_count_df
user_month_count_df = df.pivot_table(index="user_id",values="order_dt",aggfunc="count", columns="month").fillna(value=0)
user_month_count_df
Out[ ]:
month | 1997-01-01 | 1997-02-01 | 1997-03-01 | 1997-04-01 | 1997-05-01 | 1997-06-01 | 1997-07-01 | 1997-08-01 | 1997-09-01 | 1997-10-01 | 1997-11-01 | 1997-12-01 | 1998-01-01 | 1998-02-01 | 1998-03-01 | 1998-04-01 | 1998-05-01 | 1998-06-01 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
user_id | ||||||||||||||||||
1 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
2 | 2.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
3 | 1.000 | 0.000 | 1.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 2.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000 |
4 | 2.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
5 | 2.000 | 1.000 | 0.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.000 | 1.000 | 0.000 | 0.000 | 2.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
23566 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
23567 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
23568 | 0.000 | 0.000 | 1.000 | 2.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
23569 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
23570 | 0.000 | 0.000 | 2.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
23570 rows × 18 columns
In [ ]:
# 统计每个用户每个月是否消费,消费记录为1否则记录为0 var:df_purchase
df_purchase = user_month_count_df.applymap(lambda x : 1 if x >=1 else 0 )
df_purchase
Out[ ]:
month | 1997-01-01 | 1997-02-01 | 1997-03-01 | 1997-04-01 | 1997-05-01 | 1997-06-01 | 1997-07-01 | 1997-08-01 | 1997-09-01 | 1997-10-01 | 1997-11-01 | 1997-12-01 | 1998-01-01 | 1998-02-01 | 1998-03-01 | 1998-04-01 | 1998-05-01 | 1998-06-01 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
user_id | ||||||||||||||||||
1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
3 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
4 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
5 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
23566 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
23567 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
23568 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
23569 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
23570 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
23570 rows × 18 columns
In [ ]:
# 用户生命周期模型,固定算法
def active_status(data):
status = []
for i in range(18):
# 若本月没有消费
if data[i] == 0:
if len(status) > 0:
if status[i-1] == "unreg":
status.append("unreg")
else:
status.append("unactive")
else:
status.append("unreg")
# 若本月消费
else:
if len(status) == 0:
status.append("new")
else:
if status[i-1] == "unactive":
status.append("return")
elif status[i-1] == "ureg":
status.append("new")
else:
status.append("active")
return status
In [ ]:
# 将df_purchase中的原始数据0和1修改为new,unactive...返回新var:df_purchase_new
df_purchase_new = df_purchase.apply(active_status,axis=1)
df_purchase_new
Out[ ]:
user_id 1 [new, unactive, unactive, unactive, unactive, ... 2 [new, unactive, unactive, unactive, unactive, ... 3 [new, unactive, return, active, unactive, unac... 4 [new, unactive, unactive, unactive, unactive, ... 5 [new, active, unactive, return, active, active... ... 23566 [unreg, unreg, active, unactive, unactive, una... 23567 [unreg, unreg, active, unactive, unactive, una... 23568 [unreg, unreg, active, active, unactive, unact... 23569 [unreg, unreg, active, unactive, unactive, una... 23570 [unreg, unreg, active, unactive, unactive, una... Length: 23570, dtype: object
In [ ]:
# 将pivoted_status的values转成list,再将list转成DataFrame
# 将df_purchase的index作为df_pruchase的index,columns相同
# var:df_puechase_new
df_purchase_new1 = pd.DataFrame(data=df_purchase_new.to_list(),index=df_purchase.index, columns=df_purchase.columns)
df_purchase_new1.head()
Out[ ]:
month | 1997-01-01 | 1997-02-01 | 1997-03-01 | 1997-04-01 | 1997-05-01 | 1997-06-01 | 1997-07-01 | 1997-08-01 | 1997-09-01 | 1997-10-01 | 1997-11-01 | 1997-12-01 | 1998-01-01 | 1998-02-01 | 1998-03-01 | 1998-04-01 | 1998-05-01 | 1998-06-01 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
user_id | ||||||||||||||||||
1 | new | unactive | unactive | unactive | unactive | unactive | unactive | unactive | unactive | unactive | unactive | unactive | unactive | unactive | unactive | unactive | unactive | unactive |
2 | new | unactive | unactive | unactive | unactive | unactive | unactive | unactive | unactive | unactive | unactive | unactive | unactive | unactive | unactive | unactive | unactive | unactive |
3 | new | unactive | return | active | unactive | unactive | unactive | unactive | unactive | unactive | return | unactive | unactive | unactive | unactive | unactive | return | unactive |
4 | new | unactive | unactive | unactive | unactive | unactive | unactive | return | unactive | unactive | unactive | return | unactive | unactive | unactive | unactive | unactive | unactive |
5 | new | active | unactive | return | active | active | active | unactive | return | unactive | unactive | return | active | unactive | unactive | unactive | unactive | unactive |
In [ ]:
# 将每月不同活跃用户进行计数 var:purchase_status_ct
purchase_status_ct = df_purchase_new1.apply(lambda x : pd.value_counts(x),axis=0).fillna(0)
purchase_status_ct.head()
Out[ ]:
month | 1997-01-01 | 1997-02-01 | 1997-03-01 | 1997-04-01 | 1997-05-01 | 1997-06-01 | 1997-07-01 | 1997-08-01 | 1997-09-01 | 1997-10-01 | 1997-11-01 | 1997-12-01 | 1998-01-01 | 1998-02-01 | 1998-03-01 | 1998-04-01 | 1998-05-01 | 1998-06-01 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
active | 0.000 | 9633.000 | 8929.000 | 1773.000 | 852.000 | 747.000 | 746.000 | 604.000 | 528.000 | 532.000 | 624.000 | 632.000 | 512.000 | 472.000 | 571.000 | 518.000 | 459.000 | 446.000 |
new | 7846.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
return | 0.000 | 0.000 | 595.000 | 1049.000 | 1362.000 | 1592.000 | 1434.000 | 1168.000 | 1211.000 | 1307.000 | 1404.000 | 1232.000 | 1025.000 | 1079.000 | 1489.000 | 919.000 | 1029.000 | 1060.000 |
unactive | 0.000 | 6689.000 | 14046.000 | 20748.000 | 21356.000 | 21231.000 | 21390.000 | 21798.000 | 21831.000 | 21731.000 | 21542.000 | 21706.000 | 22033.000 | 22019.000 | 21510.000 | 22133.000 | 22082.000 | 22064.000 |
unreg | 15724.000 | 7248.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
In [ ]:
# 转置
t_purchase_status_ct = purchase_status_ct.T
t_purchase_status_ct
Out[ ]:
active | new | return | unactive | unreg | |
---|---|---|---|---|---|
month | |||||
1997-01-01 | 0.000 | 7846.000 | 0.000 | 0.000 | 15724.000 |
1997-02-01 | 9633.000 | 0.000 | 0.000 | 6689.000 | 7248.000 |
1997-03-01 | 8929.000 | 0.000 | 595.000 | 14046.000 | 0.000 |
1997-04-01 | 1773.000 | 0.000 | 1049.000 | 20748.000 | 0.000 |
1997-05-01 | 852.000 | 0.000 | 1362.000 | 21356.000 | 0.000 |
1997-06-01 | 747.000 | 0.000 | 1592.000 | 21231.000 | 0.000 |
1997-07-01 | 746.000 | 0.000 | 1434.000 | 21390.000 | 0.000 |
1997-08-01 | 604.000 | 0.000 | 1168.000 | 21798.000 | 0.000 |
1997-09-01 | 528.000 | 0.000 | 1211.000 | 21831.000 | 0.000 |
1997-10-01 | 532.000 | 0.000 | 1307.000 | 21731.000 | 0.000 |
1997-11-01 | 624.000 | 0.000 | 1404.000 | 21542.000 | 0.000 |
1997-12-01 | 632.000 | 0.000 | 1232.000 | 21706.000 | 0.000 |
1998-01-01 | 512.000 | 0.000 | 1025.000 | 22033.000 | 0.000 |
1998-02-01 | 472.000 | 0.000 | 1079.000 | 22019.000 | 0.000 |
1998-03-01 | 571.000 | 0.000 | 1489.000 | 21510.000 | 0.000 |
1998-04-01 | 518.000 | 0.000 | 919.000 | 22133.000 | 0.000 |
1998-05-01 | 459.000 | 0.000 | 1029.000 | 22082.000 | 0.000 |
1998-06-01 | 446.000 | 0.000 | 1060.000 | 22064.000 | 0.000 |