Pandas数据合并


Pandas 提供的 merge() 函数能够进行高效的合并操作,这与 SQL 关系型数据库的 MERGE 用法非常相似。从字面意思上不难理解,merge 翻译为“合并”,指的是将两个 DataFrame 数据表按照指定的规则进行连接,最后拼接成一个新的 DataFrame 数据表。

merge() 函数的法格式如下:

pd.merge(left, right, how='inner', on=None, left_on=None, right_on=None,left_index=False, right_index=False, sort=True,suffixes=('_x', '_y'), copy=True)

参数说明,如下表所示:

参数名称 说明
left/right 两个不同的 DataFrame 对象。
on 指定用于连接的键(即列标签的名字),该键必须同时存在于左右两个 DataFrame 中,如果没有指定,并且其他参数也未指定, 那么将会以两个 DataFrame 的列名交集做为连接键。
left_on 指定左侧 DataFrame 中作连接键的列名。该参数在左、右列标签名不相同,但表达的含义相同时非常有用。
right_on 指定左侧 DataFrame 中作连接键的列名。
left_index 布尔参数,默认为 False。如果为 True 则使用左侧 DataFrame 的行索引作为连接键,若 DataFrame 具有多层 索引(MultiIndex),则层的数量必须与连接键的数量相等。
right_index 布尔参数,默认为 False。如果为 True 则使用左侧 DataFrame 的行索引作为连接键。
how 要执行的合并类型,从 {'left', 'right', 'outer', 'inner'} 中取值,默认为“inner”内连接。
sort 布尔值参数,默认为True,它会将合并后的数据进行排序;若设置为 False,则按照 how 给定的参数值进行排序。
suffixes 字符串组成的元组。当左右 DataFrame 存在相同列名时,通过该参数可以在相同的列名后附加后缀名,默认为('_x','_y')。
copy 默认为 True,表示对数据进行复制。

注意:Pandas 库的 merge() 支持各种内外连接,与其相似的还有 join() 函数(默认为左连接)。

下面创建两个不同的 DataFrame,然后对它们进行合并操作:

import pandas as pd 
left = pd.DataFrame({'id':[1,2,3,4],'Name': ['Smith', 'Maiki', 'Hunter', 'Hilen'],'subject_id':['sub1','sub2','sub4','sub6']}) 
right = pd.DataFrame({'id':[1,2,3,4],'Name': ['William', 'Albert', 'Tony', 'Allen'],'subject_id':['sub2','sub4','sub3','sub6']}) 
print (left) 
print (right)  

输出如下:

   id    Name subject_id
0   1   Smith       sub1
1   2   Maiki       sub2
2   3  Hunter       sub4
3   4   Hilen       sub6

   id     Name subject_id
0   1  William       sub2
1   2   Albert       sub4
2   3     Tony       sub3
3   4    Allen       sub6

1) 在单个键上进行合并操作#

通过 on 参数指定一个连接键,然后对上述 DataFrame 进行合并操作:

import pandas as pd 
left = pd.DataFrame({    'id':[1,2,3,4],    'Name': ['Smith', 'Maiki', 'Hunter', 'Hilen'],    'subject_id':['sub1','sub2','sub4','sub6']}) 
right = pd.DataFrame({     'id':[1,2,3,4],    'Name': ['William', 'Albert', 'Tony', 'Allen'],    'subject_id':['sub2','sub4','sub3','sub6']})
#通过on参数指定合并的键
print(pd.merge(left,right,on='id'))

输出结果:

   id  Name_x subject_id_x   Name_y subject_id_y
0   1   Smith         sub1  William         sub2
1   2   Maiki         sub2   Albert         sub4
2   3  Hunter         sub4     Tony         sub3
3   4   Hilen         sub6    Allen         sub6

2) 在多个键上进行合并操作#

下面示例,指定多个键来合并上述两个 DataFrame 对象:

import pandas as pd
left = pd.DataFrame({'key1': ['K0', 'K0', 'K1', 'K2'],
                      'key2': ['K0', 'K1', 'K0', 'K1'],
                         'A': ['A0', 'A1', 'A2', 'A3'],
                         'B': ['B0', 'B1', 'B2', 'B3']})

right = pd.DataFrame({'key1': ['K0', 'K1', 'K1', 'K2'],
                      'key2': ['K0', 'K0', 'K0', 'K0'],
                         'C': ['C0', 'C1', 'C2', 'C3'],
                         'D': ['D0', 'D1', 'D2', 'D3']})

result = pd.merge(left, right, on=['key1', 'key2'])

输出结果:

  key1 key2   A   B   C   D
0   K0   K0  A0  B0  C0  D0
1   K1   K0  A2  B2  C1  D1
2   K1   K0  A2  B2  C2  D2

使用how参数合并#

通过how参数可以确定 DataFrame 中要包含哪些键,如果在左表、右表都不存的键,那么合并后该键对应的值为 NaN。为了便于大家学习,我们将 how 参数和与其等价的 SQL 语句做了总结:

Merge方法 等效 SQL 描述
left LEFT OUTER JOIN 使用左侧对象的key
right RIGHT OUTER JOIN 使用右侧对象的key
outer FULL OUTER JOIN 使用左右两侧所有key的并集
inner INNER JOIN 使用左右两侧key的交集

1) left join#

import pandas as pd 
left = pd.DataFrame({    'id':[1,2,3,4],    'Name': ['Smith', 'Maiki', 'Hunter', 'Hilen'],    'subject_id':['sub1','sub2','sub4','sub6']}) 
right = pd.DataFrame({     'id':[1,2,3,4],    'Name': ['Bill', 'Lucy', 'Jack', 'Mike'],    'subject_id':['sub2','sub4','sub3','sub6']}) 
#以left侧的subject_id为键
print(pd.merge(left,right,on='subject_id',how="left"))

输出结果:

   id_x  Name_x subject_id  id_y Name_y
0     1   Smith       sub1   NaN    NaN
1     2   Maiki       sub2   1.0   Bill
2     3  Hunter       sub4   2.0   Lucy
3     4   Hilen       sub6   4.0   Mike

2) right join#

import pandas as pd 
left = pd.DataFrame({    'id':[1,2,3,4],    'Name': ['Smith', 'Maiki', 'Hunter', 'Hilen'],    'subject_id':['sub1','sub2','sub4','sub6']}) 
right = pd.DataFrame({     'id':[1,2,3,4],    'Name': ['Bill', 'Lucy', 'Jack', 'Mike'],    'subject_id':['sub2','sub4','sub3','sub6']}) 
#以right侧的subject_id为键
print(pd.merge(left,right,on='subject_id',how="right"))

输出结果:

   id_x  Name_x subject_id  id_y Name_y
0   2.0   Maiki       sub2     1   Bill
1   3.0  Hunter       sub4     2   Lucy
2   4.0   Hilen       sub6     4   Mike
3   NaN     NaN       sub3     3   Jack

3) outer join(并集)#

import pandas as pd 
left = pd.DataFrame({    'id':[1,2,3,4],    'Name': ['Smith', 'Maiki', 'Hunter', 'Hilen'],    'subject_id':['sub1','sub2','sub4','sub6']}) 
right = pd.DataFrame({     'id':[1,2,3,4],    'Name': ['Bill', 'Lucy', 'Jack', 'Mike'],    'subject_id':['sub2','sub4','sub3','sub6']}) 
#求出两个subject_id的并集,并作为键
print(pd.merge(left,right,on='subject_id',how="outer"))

输出结果:

   id_x  Name_x subject_id  id_y Name_y
0   1.0   Smith       sub1   NaN    NaN
1   2.0   Maiki       sub2   1.0   Bill
2   3.0  Hunter       sub4   2.0   Lucy
3   4.0   Hilen       sub6   4.0   Mike
4   NaN     NaN       sub3   3.0   Jack

4) inner join(交集)#

import pandas as pd 
left = pd.DataFrame({    'id':[1,2,3,4],    'Name': ['Smith', 'Maiki', 'Hunter', 'Hilen'],    'subject_id':['sub1','sub2','sub4','sub6']}) 
right = pd.DataFrame({     'id':[1,2,3,4],    'Name': ['Bill', 'Lucy', 'Jack', 'Mike'],    'subject_id':['sub2','sub4','sub3','sub6']}) 
#求出两个subject_id的交集,并将结果作为键
print(pd.merge(left,right,on='subject_id',how="inner"))

输出结果:

   id_x  Name_x subject_id  id_y Name_y
0     2   Maiki       sub2     1   Bill
1     3  Hunter       sub4     2   Lucy
2     4   Hilen       sub6     4   Mike

注意:当 a 与 b 进行内连操作时 a.join(b) 不等于 b.join(a)。

作者:Hovey

出处:https://www.cnblogs.com/thankcat/p/17073984.html

版权:本作品采用「署名-非商业性使用-相同方式共享 4.0 国际」许可协议进行许可。

posted @   ThankCAT  阅读(124)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· DeepSeek 开源周回顾「GitHub 热点速览」
· 物流快递公司核心技术能力-地址解析分单基础技术分享
· .NET 10首个预览版发布:重大改进与新特性概览!
· AI与.NET技术实操系列(二):开始使用ML.NET
· 单线程的Redis速度为什么快?
more_horiz
keyboard_arrow_up dark_mode palette
选择主题
menu
点击右上角即可分享
微信分享提示