Python实现二叉查找

搜索

搜索是在一个项目集合中找到一个特定项目的算法过程。搜索通常的答案是真的或假的,因为该项目是否存在。 搜索的几种常见方法:顺序查找、二分法查找、二叉树查找、哈希查找

二分法查找#

二分查找又称折半查找,优点是比较次数少,查找速度快,平均性能好;其缺点是要求待查表为有序表,且插入删除困难。因此,折半查找方法适用于不经常变动而查找频繁的有序列表。首先,假设表中元素是按升序排列,将表中间位置记录的关键字与查找关键字比较,如果两者相等,则查找成功;否则利用中间位置记录将表分成前、后两个子表,如果中间位置记录的关键字大于查找关键字,则进一步查找前一子表,否则进一步查找后一子表。重复以上过程,直到找到满足条件的记录,使查找成功,或直到子表不存在为止,此时查找不成功。

二分法查找实现#

(非递归实现)#

def binary_search(alist, item):
      first = 0
      last = len(alist)-1
      while first<=last:
          midpoint = (first + last)/2
          if alist[midpoint] == item:
              return True
          elif item < alist[midpoint]:
              last = midpoint-1
          else:
              first = midpoint+1
    return False
testlist = [0, 1, 2, 8, 13, 17, 19, 32, 42,]
print(binary_search(testlist, 3))
print(binary_search(testlist, 13))

(递归实现)#

def binary_search1(alist, item):
    """二分查找"""
    n = len(alist)
    if n > 0:
        mid = n // 2
        if alist[mid] == item:
            return True
        elif alist[mid] <= item:
            return binary_search1(alist[mid+1:], item)
        else:
            return binary_search1(alist[:mid], item)
    else:
        return False


if __name__ == "__main__":
    l1 = [1, 2, 3, 4, 5, 6, 7, 8, 9]
    print(binary_search1(l1, 2))
    print(binary_search1(l1, 10))

时间复杂度#

  • 最优时间复杂度:O(1)
  • 最坏时间复杂度:O(\(log_n\))

作者:Hovey

出处:https://www.cnblogs.com/thankcat/p/17050234.html

版权:本作品采用「署名-非商业性使用-相同方式共享 4.0 国际」许可协议进行许可。

posted @   ThankCAT  阅读(40)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· DeepSeek 开源周回顾「GitHub 热点速览」
· 物流快递公司核心技术能力-地址解析分单基础技术分享
· .NET 10首个预览版发布:重大改进与新特性概览!
· AI与.NET技术实操系列(二):开始使用ML.NET
· 单线程的Redis速度为什么快?
more_horiz
keyboard_arrow_up dark_mode palette
选择主题
menu
点击右上角即可分享
微信分享提示