kaggle google Quest比赛代码阅读笔记
关于抽取bert里面第几层的代码:
(
#我们取零,因为据我了解,这就是[CLS]令牌...
#想法是也要合并最后4层而不是最后一层,因为它太接近输出了
#层,它可能没有那么有效,因为它受到o / p的更多控制。
)
https://www.kaggle.com/c/google-quest-challenge/discussion/123770
class BertForSequenceClassification_v2(BertPreTrainedModel): r""" **labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``: Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: **loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``: Classification (or regression if config.num_labels==1) loss. **logits**: ``torch.FloatTensor`` of shape ``(batch_size, config.num_labels)`` Classification (or regression if config.num_labels==1) scores (before SoftMax). **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``) list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings) of shape ``(batch_size, sequence_length, hidden_size)``: Hidden-states of the model at the output of each layer plus the initial embedding outputs. outputs = model(input_ids, labels=labels) loss, logits = outputs[:2] """ def __init__(self, config): super(BertForSequenceClassification_v2, self).__init__(config) # config.output_hidden_states=True (make sure) self.num_labels = config.num_labels self.bert = BertModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, self.config.num_labels) self.init_weights() def forward(self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, extra_feats=None): outputs = self.bert(input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds) # sequence_output = outputs[0] # pooled_output = outputs[1] hidden_states = outputs[2] #hidden_states: 12 layers tuples each is of (batch_size, sequence_length, hidden_size) + embedding`` # print(seq[-1].shape, seq[-1][:, 0].shape) # we are taking zero because in my understanding that's the [CLS] token... # idea is to pool last 4 layers as well instead of just the last one, since it's too close to the output # layers, it might not be that efficient as it's more regulated by the o/p's.. h12 = hidden_states[-1][:, 0].reshape((-1, 1, 768)) h11 = hidden_states[-2][:, 0].reshape((-1, 1, 768)) h10 = hidden_states[-3][:, 0].reshape((-1, 1, 768)) h9 = hidden_states[-4][:, 0].reshape((-1, 1, 768)) all_h = torch.cat([h9, h10, h11, h12], 1) #Also don't forget to add the last CLS token seq_op/pooled_op as you wish.. mean_pool = torch.mean(all_h, 1) pooled_output = self.dropout(mean_pool) logits = self.classifier(pooled_output) outputs = (logits,) + outputs[2:] # add hidden states and attention if they are here return outputs # (loss), logits, (hidden_states), (attentions)