速度起飞!替代 pandas 的 8 个神库

转载:https://mp.weixin.qq.com/s/ars6wWoUf59i7TyxAPE22g

大家好,我是指南兄。

本篇介绍 8 个可以替代pandas的库,在加速技巧之上,再次打开速度瓶颈,大大提升数据处理的效率。

1. Dask

Dask在大于内存的数据集上提供多核和分布式并行执行。

图片

在Dask中,一个DataFrame是一个大型且并行的DataFrame,由许多较小的 pandas DataFrames组成,沿索引拆分。

这些 pandas DataFrames 可以存在于单个机器上的磁盘中计算远超于内存的计算,或者存在集群中的很多不同机器上完成。一个 Dask DataFrame 操作会触发所有 Pandas DataFrames 的操作。

Dask-ML支持pandas、Numpy、Sklearn、XGBoost、XArray、RAPIDS等等,对于常用的数据处理、建模分析是完全够用的。

# 安装dask
pip install dask
# 导入dask dataframe
import dask.dataframe as dd

2. Modin

Modin是一个多进程的Dataframe库,可以加速Pandas的工作流程。多进程意味着,如果在多核的计算机上查询速度就会成倍的提升。

Modin具有与pandas相同的API,使用上只需在import导入时修改一下,其余操作一模一样。

# 导入 modin pandas
import modin.pandas as pd

3. Data Table

Datatable是一个用于处理表格数据的 Python 库。

pandas的使用上很类似,但更侧重于速度和大数据的支持。在单节点的机器上,无论是读取数据,还是数据转换等操作,速度均远胜于pandas

如果不是分布式而是单节点处理数据,遇到内存不够或者速度慢,也不妨试试这个库。

使用文档:https://datatable.readthedocs.io/en/latest/start/quick-start.html

4. Polars

Polars是使用 Apache Arrow Columnar Format 作为内存模型在 Rust 中实现的速度极快的 DataFrames 库。

# 安装 polars
pip install polars
# 导入 polars
import polars as pl

 

使用文档:https://pola-rs.github.io/polars-book/user-guide/index.html

5. Vaex

Vaex 也是一个开源的 DataFrame,它采用内存映射、高效的核外算法和延迟计算等技术。

对于大数据集而言,只要磁盘空间可以装下数据集,使用Vaex就可以对其进行分析,解决内存不足的问题。

它的各种功能函数也都封装为类 Pandas 的 API,几乎没有学习成本。

6. Pyspark

Pyspark 是 Apache Spark 的 Python API,通过分布式计算处理大型数据集。

# 安装
pip install pyspark
# 导入
from pyspark.sql import SparkSession, functions as f
spark = SparkSession.builder.appName("SimpleApp").getOrCreate()
df = spark.read.option('header', True).csv('../input/yellow-new-yo

由于spark在速度上较hadoop更有优势,现在很多企业的大数据架构都会选择使用spark。

7. Koalas

Koalas 是在 Apache Spark 之上实现 的pandas DataFrame API,让数据分析更高效。

由于 Koalas 是在 Apache Spark 之上运行的,因此还必须安装 Spark

# 安装
pip install pyspark
pip install koalas
# 导入
import databricks.koalas as ks
from pyspark.sql import SparkSessio
使用文档:https://koalas.readthedocs.io/en/latest/index.html

8. cuDF

cuDF 是一个 Python GPU DataFrame 库,基于 Apache Arrow 列式内存格式构建,用于数据操作。

cuDF 提供类 pandas 的 API,因此数据分析师也是无需了解 CUDA 编程细节的。

import cudf, io, requests
from io import StringIO

url = "https://github.com/plotly/datasets/raw/master/tips.csv"
content = requests.get(url).content.decode('utf-8')

tips_df = cudf.read_csv(StringIO(content))
tips_df['tip_percentage'] = tips_df['tip'] / tips_df['total_bill'] * 100

print(tips_df.groupby('size').tip_percentage.mean())
使用文档:https://github.com/rapidsai/cudf

本篇介绍的 8 个Python库原理不同,使用环境也有差异,大家可以根据自己的需求进行尝试。

但这些库基本上都提供了类pandas的API,因此在使用上没有什么学习成本,只要配置好环境就可以上手操作了。                                             

Python指南
优秀的Python程序员都在这里,介绍学习 Python 的一切。
19篇原创内容
公众号

       

文末有一个我们团队正在做的副业,已经操盘了快1年多,执行力够强的小伙伴基本都能拿到结果。

posted on   我和你并没有不同  阅读(640)  评论(0编辑  收藏  举报

相关博文:
阅读排行:
· DeepSeek 开源周回顾「GitHub 热点速览」
· 物流快递公司核心技术能力-地址解析分单基础技术分享
· .NET 10首个预览版发布:重大改进与新特性概览!
· AI与.NET技术实操系列(二):开始使用ML.NET
· .NET10 - 预览版1新功能体验(一)
历史上的今天:
2021-08-27 keepalived 转载自:https://zhuanlan.zhihu.com/p/143295216
2020-08-27 redis 转码
2019-08-27 shell 学习笔记2
2019-08-27 python 编码规范
2018-08-27 java学习笔记
< 2025年3月 >
23 24 25 26 27 28 1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31 1 2 3 4 5

统计

点击右上角即可分享
微信分享提示