SparkSQL读写外部数据源--csv文件的读写

object CSVFileTest {
  def main(args: Array[String]): Unit = {
    val spark = SparkSession
      .builder()
      .appName("CSVFileTest")
      .master("local")
      .getOrCreate()

    import spark.implicits._

    val df = spark.read.json(s"${BASE_PATH}/people.json")
    
    //将json文件数据转化成csv文件数据
    df.write.mode(SaveMode.Overwrite).csv(s"${BASE_PATH}/csv")

    val csvDF = spark.read.csv(s"${BASE_PATH}/csv").toDF("age", "name")
    csvDF.show()

    //从String类型中的Dataset来创建DataFrame
    val csvDS = spark.createDataset(Seq("23,jeffy", "34,katy"))
    val ds = spark.read.csv(csvDS)
    ds.show()

    //1: sep 和 delimiter的功能都是一样,都是表示csv的切割符,(默认是,)(读写参数)
    spark.read.csv(Seq("23,jeffy", "34,katy").toDS()).show()
    spark.read.option("sep", " ").csv(Seq("23 jeffy", "34 katy").toDS()).show()
    spark.read.option("delimiter", " ").csv(Seq("23 jeffy", "34 katy").toDS()).show()
    ds.write.mode(SaveMode.Overwrite).option("sep", "|").csv(s"${BASE_PATH}/delimiter")

    //2: header(默认是false) 表示是否将csv文件中的第一行作为schema(读写参数)
    spark.read.csv(s"${BASE_PATH}/cars.csv").show()
    /*
    +----+-----+-----+--------------------+-----+
    | _c0|  _c1|  _c2|                 _c3|  _c4|
    +----+-----+-----+--------------------+-----+
    |year| make|model|             comment|blank|
    |2012|Tesla|    S|          No comment| null|
    |1997| Ford| E350|Go get one now th...| null|
    |2015|Chevy| Volt|                null| null|
    +----+-----+-----+--------------------+-----+
     */
    val headerDF = spark.read.option("header", true).csv(s"${BASE_PATH}/cars.csv")
    headerDF.printSchema()
    headerDF.write.mode(SaveMode.Overwrite).option("header", true).csv(s"${BASE_PATH}/headerDF")
    /*
    root
     |-- year: string (nullable = true)
     |-- make: string (nullable = true)
     |-- model: string (nullable = true)
     |-- comment: string (nullable = true)
     |-- blank: string (nullable = true)
     */

    headerDF.show()
    /*
    +----+-----+-----+--------------------+-----+
    |year| make|model|             comment|blank|
    +----+-----+-----+--------------------+-----+
    |2012|Tesla|    S|          No comment| null|
    |1997| Ford| E350|Go get one now th...| null|
    |2015|Chevy| Volt|                null| null|
    +----+-----+-----+--------------------+-----+
     */

    //3: inferSchema 表示是否支持从数据中推导出schema(只读参数)
    val inferSchemaDF =
      spark.read.option("header", true).option("inferSchema", true).csv(s"${BASE_PATH}/cars.csv")
    inferSchemaDF.printSchema()
    /*
    root
     |-- year: integer (nullable = true)
     |-- make: string (nullable = true)
     |-- model: string (nullable = true)
     |-- comment: string (nullable = true)
     |-- blank: string (nullable = true)
     */
    inferSchemaDF.show()
    /*
    +----+-----+-----+--------------------+-----+
    |year| make|model|             comment|blank|
    +----+-----+-----+--------------------+-----+
    |2012|Tesla|    S|          No comment| null|
    |1997| Ford| E350|Go get one now th...| null|
    |2015|Chevy| Volt|                null| null|
    +----+-----+-----+--------------------+-----+
     */

    //4: charset和encoding(默认是UTF-8),根据指定的编码器对csv文件进行解码(只读参数)
    spark.read.option("header", "true").option("encoding", "iso-8859-1").option("sep", "þ").csv(s"${BASE_PATH}/cars_iso-8859-1.csv").show()
    /*
    +----+-----+-----+--------------------+-----+
    |year| make|model|             comment|blank|
    +----+-----+-----+--------------------+-----+
    |2012|Tesla|    S|          No comment| null|
    |1997| Ford| E350|Go get one now th...| null|
    |2015|Chevy| Volt|                null| null|
    +----+-----+-----+--------------------+-----+
     */


    //5: quote(默认值是`"` ) 表示将不需要切割的字段值用quote标记起来(读写参数)
    var optMap = Map("quote" -> "\'", "delimiter" -> " ")
    spark.read.options(optMap).csv(Seq("23 'jeffy tang'", "34 katy").toDS()).show()
    /*
    +---+----------+
    |_c0|       _c1|
    +---+----------+
    | 23|jeffy tang|
    | 34|      katy|
    +---+----------+
     */

    //6: escape(默认值是`\`) 如果在quote标记的字段值中还含有quote,则用escape来避免(读写参数)
    optMap = Map("quote" -> "\'", "delimiter" -> " ", "escape" -> "\"")
    spark.read.options(optMap).csv(Seq("23 'jeffy \"'tang'", "34 katy").toDS()).show()


    //7: comment(默认是空字符串,表示关闭这个功能) 表示csv中的注释的标记符(读写参数)
    optMap = Map("comment" -> "~", "header" -> "false")
    spark.read.options(optMap).csv(s"${BASE_PATH}/comments.csv").show()
    /*
    +---+---+---+---+----+-------------------+
    |_c0|_c1|_c2|_c3| _c4|                _c5|
    +---+---+---+---+----+-------------------+
    |  1|  2|  3|  4|5.01|2015-08-20 15:57:00|
    |  6|  7|  8|  9|   0|2015-08-21 16:58:01|
    |  1|  2|  3|  4|   5|2015-08-23 18:00:42|
    +---+---+---+---+----+-------------------+
     */

    //8: (读写参数)
    //ignoreLeadingWhiteSpace(默认是false) 表示是否忽略字段值前面的空格
    //ignoreTrailingWhiteSpace(默认是false) 表示是否忽略字段值后面的空格
    optMap = Map("ignoreLeadingWhiteSpace" -> "true", "ignoreTrailingWhiteSpace" -> "true")
    spark.read.options(optMap).csv(Seq(" a,b  , c ").toDS()).show()

    //9: multiLine(默认是false) 是否支持一条记录被拆分成了多行的csv的读取解析(只读参数)
    val primitiveFieldAndType = Seq(
      """"
        |string","integer
        |
        |
        |","long
        |
        |","bigInteger",double,boolean,null""".stripMargin,
      """"this is a
        |simple
        |string.","
        |
        |10","
        |21474836470","92233720368547758070","
        |
        |1.7976931348623157E308",true,""".stripMargin)

      primitiveFieldAndType.toDF("value").coalesce(1).write.mode(SaveMode.Overwrite).text(s"csv_multiLine_test")

      spark.read.option("header", true).option("multiLine", true).csv("csv_multiLine_test").show()


    //10: mode(默认是PERMISSIVE) (只读参数)
    //PERMISSIVE 表示碰到解析错误的时候,将字段都置为null
    //DROPMALFORMED 表示忽略掉解析错误的记录
    //FAILFAST 当有解析错误的时候,立马抛出异常
    val schema = new StructType().add("a", IntegerType).add("b", TimestampType)
    val df1 = spark.read.option("mode", "PERMISSIVE").schema(schema).csv(Seq("0,2013-111-11 12:13:14", "1,1983-08-04").toDS())
    df1.show()

    //11: nullValue(默认是空字符串), 表示需要将nullValue指定的字符串解析成null(读写参数)
    spark.read.option("nullValue", "--").csv(Seq("0,2013-11-11,--", "1,1983-08-04,3").toDS()).show()

    //12: nanValue(默认值为NaN) (只读参数)
    //positiveInf
    //negativeInf
    val numbers = spark.read.format("csv").schema(StructType(List(
        StructField("int", IntegerType, true),
        StructField("long", LongType, true),
        StructField("float", FloatType, true),
        StructField("double", DoubleType, true)
      ))).options(Map(
        "header" -> "true",
        "mode" -> "DROPMALFORMED",
        "nullValue" -> "--",
        "nanValue" -> "NAN",
        "negativeInf" -> "-INF",
        "positiveInf" -> "INF")).load(s"${BASE_PATH}/numbers.csv")
    numbers.show()
    /*
    +----+--------+---------+---------------+
    | int|    long|    float|         double|
    +----+--------+---------+---------------+
    |   8| 1000000|    1.042|2.38485450374E7|
    |null|34232323|   98.343|184721.23987223|
    |  34|    null|   98.343|184721.23987223|
    |  34|43323123|     null|184721.23987223|
    |  34|43323123|223823.95|           null|
    |  34|43323123| 223823.0|            NaN|
    |  34|43323123| 223823.0|       Infinity|
    |  34|43323123| 223823.0|      -Infinity|
    +----+--------+---------+---------------+
     */

    //13: codec和compression 压缩格式,支持的压缩格式有:
    //none 和 uncompressed表示不压缩
    //bzip2、deflate、gzip、lz4、snappy (只写参数)
    inferSchemaDF.write.mode(SaveMode.Overwrite).option("compression", "gzip").csv(s"${BASE_PATH}/compression")

    //14 dateFormat (读写参数)
    val customSchema = new StructType(Array(StructField("date", DateType, true)))
    val date1 =
      spark.read.option("dateFormat", "dd/MM/yyyy HH:mm").schema(customSchema).csv(Seq("26/08/2015 18:00", "27/10/2014 18:30").toDS())
    date1.printSchema()
    /*
    root
      |-- date: date (nullable = true)
     */
    date1.write.mode(SaveMode.Overwrite).option("dateFormat", "yyyy-MM-dd").csv(s"${BASE_PATH}/dateFormat")
    spark.read.csv(s"${BASE_PATH}/dateFormat").show()

    //15: timestampFormat (读写参数)
    val timeSchema = new StructType(Array(StructField("date", TimestampType, true)))
    val time =
      spark.read.option("timestampFormat", "dd/MM/yyyy HH:mm").schema(timeSchema).csv(Seq("26/08/2015 18:00", "27/10/2014 18:30").toDS())
    time.printSchema()
    /*
    root
      |-- date: timestamp (nullable = true)
     */
    time.write.mode(SaveMode.Overwrite).option("timestampFormat", "yyyy-MM-dd HH:mm").csv(s"${BASE_PATH}/timestampFormat")
    spark.read.csv(s"${BASE_PATH}/timestampFormat").show()

    //16: maxColumns(默认是20480) 规定一个csv的一条记录最大的列数 (只读参数)
    spark.read.option("maxColumns", "3").csv(Seq("test,as,g", "h,bm,s").toDS()).show() //会报错

    spark.stop()

  }
}

  

posted @ 2019-09-08 23:00  花未全开*月未圆  阅读(4791)  评论(0编辑  收藏  举报