编程模型:数据处理层

Basic相关API

import org.apache.spark.storage.StorageLevel
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.{HashPartitioner, SparkConf, SparkContext}

/**
  * WordCount程序,Spark Streaming消费TCP Server发过来的实时数据的例子:
  *
  * 1、在master服务器上启动一个Netcat server
  * `$ nc -lk 9998` (如果nc命令无效的话,我们可以用yum install -y nc来安装nc)
  *
  * 2、用下面的命令在在集群中将Spark Streaming应用跑起来
   spark-submit --class com.dev.streaming.NetworkWordCount \
   --master spark://master:7077 \
   --deploy-mode client \
   --driver-memory 512m \
   --executor-memory 512m \
   --total-executor-cores 4 \
   --executor-cores 2 \
   /home/hadoop-dev/spark-course/streaming/spark-streaming-basic-1.0-SNAPSHOT.jar

  spark-shell --master spark://master:7077 --total-executor-cores 4 --executor-cores 2
  */
object BasicAPITest {
  def main(args: Array[String]) {
    val sparkConf = new SparkConf().setAppName("NetworkWordCount")
    val sc = new SparkContext(sparkConf)

    // StreamingContext 编程入口
    val ssc = new StreamingContext(sc, Seconds(1))

    //数据接收器(Receiver)
    //创建一个接收器(ReceiverInputDStream),这个接收器接收一台机器上的某个端口通过socket发送过来的数据并处理
    val lines = ssc.socketTextStream("master", 9998, StorageLevel.MEMORY_AND_DISK_SER)

    //数据处理(Process)
    //处理的逻辑,就是简单的进行word count
    val words = lines.flatMap(_.split(" ")).filter(_.contains("exception"))
    val wordPairs = words.map(x => (x, 1))
    //  reduceByKey((a: Int, b: Int) => a + b, new HashPartitioner(10)   指定suffer后分区数量和分区算法(默认是HashPartitioner)
    val wordCounts = wordPairs.repartition(100).reduceByKey((a: Int, b: Int) => a + b, new HashPartitioner(10))

    //结果输出(Output)
    //将结果输出到控制台
    wordCounts.print()

    //启动Streaming处理流
    ssc.start()

    //等待Streaming程序终止
    ssc.awaitTermination()
  }
}

  Join相关API

import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.storage.StorageLevel
import org.apache.spark.streaming.{Seconds, StreamingContext}

/**
  * Created by tangweiqun on 2018/1/6.
  */
object JoinAPITest {
  def main(args: Array[String]): Unit = {
    val sparkConf = new SparkConf().setAppName("NetworkWordCount")
    val sc = new SparkContext(sparkConf)

    // Create the context with a 5 second batch size
    val ssc = new StreamingContext(sc, Seconds(5))

    val lines1 = ssc.socketTextStream("master", 9998, StorageLevel.MEMORY_AND_DISK_SER)
    val kvs1 = lines1.map { line =>
      val arr = line.split(" ")
      (arr(0), arr(1))
    }


    val lines2 = ssc.socketTextStream("master", 9997, StorageLevel.MEMORY_AND_DISK_SER)
    val kvs2 = lines2.map { line =>
      val arr = line.split(" ")
      (arr(0), arr(1))
    }

    kvs1.join(kvs2).print()
    kvs1.fullOuterJoin(kvs2).print()
    kvs1.leftOuterJoin(kvs2).print()
    kvs1.rightOuterJoin(kvs2).print()

    //启动Streaming处理流
    ssc.start()

    ssc.stop(false)

    //等待Streaming程序终止
    ssc.awaitTermination()
  }
}

  TransformAPI

import org.apache.spark.rdd.RDD
import org.apache.spark.storage.StorageLevel
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.{SparkConf, SparkContext}

/**
  * Created by tangweiqun on 2018/1/6.
  */
object TransformAPITest {
  def main(args: Array[String]): Unit = {
    val sparkConf = new SparkConf().setAppName("NetworkWordCount")
    val sc = new SparkContext(sparkConf)

    // Create the context with a 1 second batch size
    val ssc = new StreamingContext(sc, Seconds(5))

    val lines1 = ssc.socketTextStream("master", 9998, StorageLevel.MEMORY_AND_DISK_SER)
    val kvs1 = lines1.map { line =>
      val arr = line.split(" ")
      (arr(0), arr(1))
    }
    ///  实时数据
    val path = "hdfs://master:9999/user/hadoop-twq/spark-course/streaming/keyvalue.txt"
    val keyvalueRDD =
      sc.textFile(path).map { line =>
        val arr = line.split(" ")
        (arr(0), arr(1))
      }
    ///  静态数据
    kvs1.transform { rdd =>
      rdd.join(keyvalueRDD)
    } print()

    //启动Streaming处理流
    ssc.start()

    ssc.stop(false)


    val lines2 = ssc.socketTextStream("master", 9997, StorageLevel.MEMORY_AND_DISK_SER)
    val kvs2 = lines2.map { line =>
      val arr = line.split(" ")
      (arr(0), arr(1))
    }
    //(将实时数据与静态数据相关联)
    kvs1.transformWith(kvs2, (rdd1: RDD[(String, String)], rdd2: RDD[(String, String)]) => rdd1.join(rdd2))

    //等待Streaming程序终止
    ssc.awaitTermination()
  }
}

  WindowAPI

import org.apache.spark.storage.StorageLevel
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.{SparkConf, SparkContext}

/**
  * Created by tangweiqun on 2018/1/6.
  */
object WindowAPITest {
  def main(args: Array[String]): Unit = {
    val sparkConf = new SparkConf().setAppName("NetworkWordCount")
    val sc = new SparkContext(sparkConf)

    // Create the context with a 1 second batch size
    val ssc = new StreamingContext(sc, Seconds(1))  ////  用来控制RDD的分区

    val lines = ssc.socketTextStream("master", 9998, StorageLevel.MEMORY_AND_DISK_SER)

    //每过2秒钟,然后显示前20秒的数据
    val windowDStream = lines.window(Seconds(20), Seconds(2))

    windowDStream.print()

    //启动Streaming处理流
    ssc.start()

    //等待Streaming程序终止
    ssc.awaitTermination()

    ssc.stop(false)
  }
}

  

 

 

 

batch interval - DStream产生的间隔,由StreamingContext指定 (这里设置为1s),控制RDD分区
window length - 窗口的长度,即一个窗口包含的RDD的个数 (这里设置为20s,必须是batch interval的倍数)
sliding interval - 窗口滑动间隔,执行窗口操作的时间段(这里设置为2s,必须是batch interval的倍数)

ReduceByKeyAndWindowAPI

 

import org.apache.spark.storage.StorageLevel
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.{SparkConf, SparkContext}

/**
  * Created by tangweiqun on 2018/1/6.
  */
object ReduceByKeyAndWindowAPITest {
  def main(args: Array[String]): Unit = {
    val sparkConf = new SparkConf().setAppName("NetworkWordCount")
    val sc = new SparkContext(sparkConf)

    // Create the context with a 1 second batch size
    val ssc = new StreamingContext(sc, Seconds(1))

    ssc.checkpoint("hdfs://master:9999/user/hadoop-twq/spark-course/streaming/checkpoint")

    val lines = ssc.socketTextStream("master", 9998, StorageLevel.MEMORY_AND_DISK_SER)

    val words = lines.flatMap(_.split(" "))

    //每5秒中,统计前20秒内每个单词出现的次数
    val wordPair = words.map(x => (x, 1))

    val wordCounts =
      wordPair.reduceByKeyAndWindow((a: Int, b: Int) => a + b, Seconds(20), Seconds(5))

    wordCounts.print()

    //启动Streaming处理流
    ssc.start()

    ssc.stop(false)






    //接受一个ReduceFunc和一个invReduceFunc
    //滑动时间比较短,窗口长度很长的场景
    //  需要用checkpoint机制
    val wordCountsOther =
      wordPair.reduceByKeyAndWindow((a: Int, b: Int) => a + b,     
        (a: Int, b: Int) => a - b, Seconds(60), Seconds(2))

    wordCountsOther.checkpoint(Seconds(12)) //窗口滑动间隔的5到10倍

    wordCountsOther.print()

    ssc.start()



    //过滤掉value = 0的值
    words.map(x => (x, 1)).reduceByKeyAndWindow((a: Int, b: Int) => a + b,
      (a: Int, b: Int) => a - b,
      Seconds(30), Seconds(10), 4,
      (record: (String, Int)) => record._2 != 0)

    //等待Streaming程序终止
    ssc.awaitTermination()
  }
}

  

 

 

 

1、分别对rdd2和rdd3进行reduceByKey
2、取在window内的rdd进行union,生成unionRDD
3、对unionRDD再次进行reduceByKey
(不需要 checkpoint机制,不需要依赖)

 

1、将两个window的所有rdd进行cogroup
(需要依赖前面的RDD,因此需要checkpoint机制)
2、对old rdds对应的value应用invReduceF
3、对new rdds对应的value应用reduceF

 

 

localCheckpoint() 存储在内存和磁盘中,但数据不可靠
checkpoint() 存储在HDFS中去,数据可靠,提高容错性能,需要设置文件目录
 

 

UpdateStateByKeyAPI
1、updateStateByKey,这个API根据一个key的之前的状态和新的接收到的数据来计算并且更新新状态。使用这个API需要做两步:第一就是为每一个key定义一个初始状态,这个状态的类型可以实任意类型;第二就是定义一个更新状态的函数,这个函数根据每一个key之前的状态和新接收到的数据计算新的状态。
 
import org.apache.spark.storage.StorageLevel
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.{HashPartitioner, SparkConf, SparkContext}

import scala.collection.mutable.ListBuffer



object UpdateStateByKeyAPITest {
  def main(args: Array[String]): Unit = {
    val sparkConf = new SparkConf().setAppName("NetworkWordCount")
    val sc = new SparkContext(sparkConf)

    // Create the context with a 1 second batch size
    val ssc = new StreamingContext(sc, Seconds(1))

    ssc.checkpoint("hdfs://master:9999/user/hadoop-twq/spark-course/streaming/checkpoint")

    val lines = ssc.socketTextStream("master", 9998, StorageLevel.MEMORY_AND_DISK_SER)

    val words = lines.flatMap(_.split(" "))

    val wordsDStream = words.map(x => (x, 1))
    ///values: Seq[Int]   在一定的时间段内收到的  当前key在这个时间段内收集到的value,
    /// currentState: Option[Int]  当前key的状态
    wordsDStream.updateStateByKey(
      (values: Seq[Int], currentState: Option[Int]) => Some(currentState.getOrElse(0) + values.sum)).print()

    //启动Streaming处理流
    ssc.start()

    ssc.stop(false)



    //updateStateByKey的另一个API
    ///  接收的函数是Iterator  三元组    String Key   Seq[Int]  接收到的数据   Option[Int]) Key当前的状态
    wordsDStream.updateStateByKey[Int]((iter: Iterator[(String, Seq[Int], Option[Int])]) => {
      val list = ListBuffer[(String, Int)]()
      while (iter.hasNext) {
        val (key, newCounts, currentState) = iter.next
        val state = Some(currentState.getOrElse(0) + newCounts.sum)

        val value = state.getOrElse(0)
        if (key.contains("error")) {
          list += ((key, value)) // Add only keys with contains error
        }
      }
      list.toIterator
    }, new HashPartitioner(4), true).print()

    ssc.start()


    //等待Streaming程序终止
    ssc.awaitTermination()
  }
}

  

MapWithStateAPI

mapWithState,这个API的功能和updateStateByKey是一样的,只不过在性能方面做了很大的优化,这个函数对于没有接收到新数据的key是不会计算新状态的,而updateStateByKey是会重新计算任何的key的新状态的,由于这个原因所以导致mapWithState可以处理的key的数量比updateStateByKey多10倍多,性能也比updateStateByKey快很多。 支持促使状态mapWithState还支持timeout API
import org.apache.spark.storage.StorageLevel
import org.apache.spark.streaming._
import org.apache.spark.{SparkConf, SparkContext}


object MapWithStateAPITest {
  def main(args: Array[String]): Unit = {
    val sparkConf = new SparkConf().setAppName("NetworkWordCount")
    val sc = new SparkContext(sparkConf)

    // Create the context with a 1 second batch size
    val ssc = new StreamingContext(sc, Seconds(5))

    ssc.checkpoint("hdfs://master:9999/user/hadoop-twq/spark-course/streaming/checkpoint")

    val lines = ssc.socketTextStream("master", 9998, StorageLevel.MEMORY_AND_DISK_SER)

    val words = lines.flatMap(_.split(" "))

    val wordsDStream = words.map(x => (x, 1))

    val initialRDD = sc.parallelize(List(("dummy", 100L), ("source", 32L)))
    // currentBatchTime : 表示当前的Batch的时间
    // key: 表示需要更新状态的key
    // value: 表示当前batch的对应的key的对应的值
    // currentState: 对应key的当前的状态
    val stateSpec = StateSpec.function((currentBatchTime: Time, key: String, value: Option[Int], currentState: State[Long]) => {
      val sum = value.getOrElse(0).toLong + currentState.getOption.getOrElse(0L)
      val output = (key, sum) 
      if (!currentState.isTimingOut()) {
        currentState.update(sum)
      }
      Some(output)
    }).initialState(initialRDD).numPartitions(2).timeout(Seconds(30)) //timeout: 当一个key超过这个时间没有接收到数据的时候,这个key以及对应的状态会被移除掉

    val result = wordsDStream.mapWithState(stateSpec)

    result.print()
    //  从一开始显示所有数据,包含初始值
    result.stateSnapshots().print()

    //启动Streaming处理流
    ssc.start()

    ssc.stop(false)


    //等待Streaming程序终止
    ssc.awaitTermination()
  }
}

  

posted @ 2019-09-08 20:16  花未全开*月未圆  阅读(471)  评论(0编辑  收藏  举报