编程模型:数据接收层

QueueStream(主要是做实验用)

import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.rdd.RDD
import org.apache.spark.streaming.{Seconds, StreamingContext}

import scala.collection.mutable.Queue

object QueueStream {

  def main(args: Array[String]) {
    val sparkConf = new SparkConf().setAppName("QueueStream")
    val sc = new SparkContext(sparkConf)
    // Create the context
    val ssc = new StreamingContext(sc, Seconds(1))

    // 创建一个RDD类型的queue    Int类型的RDD
    val rddQueue = new Queue[RDD[Int]]()

    // 创建QueueInputDStream 且接受数据和处理数据
    //  queueStream  接收 rddQueue
    val inputStream = ssc.queueStream(rddQueue)
    
    // 统计与10取模的个数
    val mappedStream = inputStream.map(x => (x % 10, 1))
    val reducedStream = mappedStream.reduceByKey(_ + _)
    reducedStream.print()

    ssc.start()

    // 将RDD push到queue中,实时处理
    rddQueue += ssc.sparkContext.makeRDD(1 to 1000, 10)

    ssc.stop(false)
  }
}

  HdfsFileStream

import org.apache.hadoop.fs.Path
import org.apache.hadoop.io.{LongWritable, Text}
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.streaming.{Seconds, StreamingContext}

/**
 * Counts words in new text files created in the given directory
  * 1、监控目录下的文件的格式必须是统一的
  * 2、不支持嵌入文件目录
  * 3、一旦文件移动到这个监控目录下,是不能变的,往文件中追加的数据是不会被读取的
  * spark-shell --master spark://master:7077 --total-executor-cores 4 --executor-cores 2
  * hadoop fs -copyFromLocal test1-process.txt hdfs://master:9999/user/hadoop-twq/spark-course/streaming/filestream
 */
object HdfsFileStream {
  def main(args: Array[String]) {
    val sparkConf = new SparkConf().setAppName("HdfsFileStream")
    val sc = new SparkContext(sparkConf)
    // Create the context
    val ssc = new StreamingContext(sc, Seconds(2))

    val filePath = "hdfs://master:9999/user/hadoop-twq/spark-course/streaming/filestream"

    // Create the FileInputDStream on the directory and use the
    // stream to count words in new files created

    // filePath 表示监控的文件目录
    // filter(Path => Boolean) 表示符合条件的文件路径
    // isNewFile 表示streaming app启动的时候是否需要处理已经存在的文件
     // fileStream[LongWritable, Text, TextInputFormat]   key是LongWritable    value类型LongWritable    输出的文件类型TextInputFormat
     //  参数:filePath文件目录     
     //     (path: Path) => path.toString.contains("process")   过滤器
     //  false   可见文件
    val linesWithText = ssc.textFileStream(filePath)   //简单写法,没有过滤器
    val lines = ssc.fileStream[LongWritable, Text, TextInputFormat](filePath,
      (path: Path) => path.toString.contains("process"), false).map(_._2.toString)

    val words = lines.flatMap(_.split(" "))
    val wordCounts = words.map(x => (x, 1)).reduceByKey(_ + _)
    wordCounts.print()

    ssc.start()
    ssc.awaitTermination()

    ssc.stop(false)
  }
}


    /*spark.streaming.fileStream.minRememberDuration = 60s 
      HDFS系统的时间需要和跑streaming app的机器的时间同步
      新文件在一定的remember window的时间段内可见,这样的新文件才会处理
   一旦文件可见,那么文件的修改时间不能变,如果向文件追加内容的话,这些内容不会被读取
*/

  

posted @ 2019-09-08 20:13  花未全开*月未圆  阅读(257)  评论(0编辑  收藏  举报