HDU_oj_1003 Max Sum

Problem Description
 
Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.
 
Input
The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line starts with a number N(1<=N<=100000), then N integers followed(all the integers are between -1000 and 1000).
 
Output
For each test case, you should output two lines. The first line is "Case #:", # means the number of the test case. The second line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence. If there are more than one result, output the first one. Output a blank line between two cases.
 
Sample Input
2
5 6 -1 5 4 -7
7 0 6 -1 1 -6 7 -5
 
Sample Output
Case 1:
14 1 4
 
Case 2:
7 1 6

 

 分析:

此题为连续子序列求最大和问题,主要思路有①枚举②累积遍历③动态规划④分治

方法比较多,将会持续更新所有算法

注意点:

①每种case中间的空行

②注意算法复杂度,枚举肯定行不通

 

可以阅读以下博文,详细了解各种解法:

https://www.cnblogs.com/TWS-YIFEI/p/5590532.html

http://blog.csdn.net/hcbbt/article/details/10454947

 

 

 1 //累积遍历算法 
 2 /*
 3 算法复杂度 O(n)
 4 
 5 */ 
 6 
 7 #include<iostream>
 8 #define MAX 100100
 9 
10 int main()
11 {
12     int num[MAX+2]={0};
13     int t,n;
14     int sum,max;
15     int m,kk,ll;
16     
17     scanf("%d",&t);
18     for(int i=1;i<=t;i++)
19     {
20         scanf("%d",&n);
21         scanf("%d",&num[0]);
22         sum=max=num[0];
23         m=kk=ll=0;
24         
25         for(int j=1;j<n;j++)
26         {
27             scanf("%d",&num[j]);
28             
29             if(sum<0)
30             {
31                 sum=num[j];
32                 m=j;
33             }
34             else
35                 sum+=num[j];
36             
37             if(sum>max)
38             {
39                 max=sum;
40                 kk=m;
41                 ll=j;
42             }    
43         }
44         if(i!=1)
45         printf("\n");
46         printf("Case %d:\n",i);
47         printf("%d %d %d\n",max,kk+1,ll+1);
48     }
49     return 0;
50 }

 

 

posted @ 2017-12-03 17:35  T丶jl  阅读(232)  评论(0编辑  收藏  举报