GAN生成图像论文总结
GAN Theory
Modifyingthe Optimization of GAN
题目 |
内容 |
GAN |
|
DCGAN |
|
WGAN |
|
Least-square GAN |
|
Loss Sensitive GAN |
|
Energy-based GAN |
|
Boundary-seeking GAN |
|
Unroll GAN |
Different Structure from the Original GAN
题目 |
内容 |
Conditional GAN |
|
Semi-supervised GAN |
|
InfoGAN |
|
BiGAN |
|
Cycle GAN |
|
Disco GAN |
|
VAE-GAN |
|
LAPGAN |
用了多个GAN可生成高分辨率图像 |
GAN Application
pix2pix |
|
题目 |
内容 |
Image-to-Image Translation with Conditional Adversarial Networks |
image2image、paired Image-to-Image Translation |
High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANs |
image2imageHD、paired Image-to-Image Translation |
CycleGAN |
Unpaired Image-to-Image Translation |
Disco GAN |
侧重分析双向映射,或者说 bijective mapping 的约束:避免 mode collapse 进而提升生成样本质量的 |
DualGAN |
生成器和判别器都和pix2pix一样。 用了wgan来训练。 |
注:最后三篇论文的想法十分相似,几乎可以说是孪生三兄弟 |
text2image |
|
题目 |
内容 |
人脸生成 |
|
题目 |
内容 |
Face-generator - Generate human faces with neural networks |
|
Beyond Face Rotation: Global and Local Perception GAN for Photorealistic and Identity Preserving Frontal View Synthesis |
根据单一侧脸生成正面逼真人脸 |
NEURAL FACE |
use DCGAN、链接:https://carpedm20.github.io/faces/ |
注:DCGAN、WGAN这类都可以生成人脸 |
按生成的图片种类分 |
|
题目 |
内容 |
生成卧室 |
DCGAN、WGAN |
生成动漫头像 |
DCGAN |