【转载】Caffe学习:运行caffe自带的两个简单例子
原文:http://www.cnblogs.com/denny402/p/5075490.html
为了程序的简洁,在caffe中是不带练习数据的,因此需要自己去下载。但在caffe根目录下的data文件夹里,作者已经为我们编写好了下载数据的脚本文件,我们只需要联网,运行这些脚本文件就行了。
注意:在caffe中运行所有程序,都必须在根目录下进行,否则会出错
1、mnist实例
mnist是一个手写数字库,由DL大牛Yan LeCun进行维护。mnist最初用于支票上的手写数字识别, 现在成了DL的入门练习库。征对mnist识别的专门模型是Lenet,算是最早的cnn模型了。
mnist数据训练样本为60000张,测试样本为10000张,每个样本为28*28大小的黑白图片,手写数字为0-9,因此分为10类。
首先下载mnist数据,假设当前路径为caffe根目录
# sudo sh data/mnist/get_mnist.sh
运行成功后,在 data/mnist/目录下有四个文件:
train-images-idx3-ubyte: 训练集样本 (9912422 bytes)
train-labels-idx1-ubyte: 训练集对应标注 (28881 bytes)
t10k-images-idx3-ubyte: 测试集图片 (1648877 bytes)
t10k-labels-idx1-ubyte: 测试集对应标注 (4542 bytes)
这些数据不能在caffe中直接使用,需要转换成LMDB数据
# sudo sh examples/mnist/create_mnist.sh
如果想运行leveldb数据,请运行 examples/siamese/ 文件夹下面的程序。 examples/mnist/ 文件夹是运行lmdb数据
转换成功后,会在 examples/mnist/目录下,生成两个文件夹,分别是mnist_train_lmdb和mnist_test_lmdb,里面存放的data.mdb和lock.mdb,就是我们需要的运行数据。
接下来是修改配置文件,如果你有GPU且已经完全安装好,这一步可以省略,如果没有,则需要修改solver配置文件。
需要的配置文件有两个,一个是lenet_solver.prototxt,另一个是train_lenet.prototxt.
首先打开lenet_solver_prototxt
# sudo vi examples/mnist/lenet_solver.prototxt
根据需要,在max_iter处设置最大迭代次数,以及决定最后一行solver_mode,是否要改成CPU
保存退出后,就可以运行这个例子了
# sudo time sh examples/mnist/train_lenet.sh
CPU运行时候大约13分钟,GPU运行时间大约4分钟,GPU+cudnn运行时候大约40秒,精度都为99%左右
2、cifar10实例
cifar10数据训练样本50000张,测试样本10000张,每张为32*32的彩色三通道图片,共分为10类。
下载数据:
# sudo sh data/cifar10/get_cifar10.sh
运行成功后,会在 data/cifar10/文件夹下生成一堆bin文件
转换数据格式为lmdb:
# sudo sh examples/cifar10/create_cifar10.sh
转换成功后,会在 examples/cifar10/文件夹下生成两个文件夹,cifar10_train_lmdb和cifar10_test_lmdb, 里面的文件就是我们需要的文件。
为了节省时间,我们进行快速训练(train_quick),训练分为两个阶段,第一个阶段(迭代4000次)调用配置文件cifar10_quick_solver.prototxt, 学习率(base_lr)为0.001
第二阶段(迭代1000次)调用配置文件cifar10_quick_solver_lr1.prototxt, 学习率(base_lr)为0.0001
前后两个配置文件就是学习率(base_lr)和最大迭代次数(max_iter)不一样,其它都是一样。如果你对配置文件比较熟悉以后,实际上是可以将两个配置文件合二为一的,设置lr_policy为multistep就可以了。
base_lr: 0.001 momentum: 0.9 weight_decay: 0.004 lr_policy: "multistep" gamma: 0.1 stepvalue: 4000 stepvalue: 5000
运行例子:
# sudo time sh examples/cifar10/train_quick.sh
GPU+cudnn大约45秒左右,精度75%左右。