scala wordcount

一.不使用spark

 1 package cn.scala_base.collection
 2 import scala.io.Source.fromFile;
 3 import scala.io.Source
 4 import scala.collection.mutable.Map
 5 
 6 /**
 7  * 借助scala实现wordcount
 8  */
 9 object WordCount {
10   val wordMap = Map[String, Int]();
11 
12   def putMap(tuple: Tuple2[Array[String], Int]) {
13     val arr = tuple._1;
14     for (x <- arr) {
15       if (wordMap.contains(x)) {
16         var count = wordMap(x).toInt + 1;
17         wordMap(x) = count;
18       } else {
19         wordMap += (x -> 1);
20       }
21     }
22 
23   }
24 
25   def putMap2(tuple: Tuple2[String, Int]) {
26     val str = tuple._1;
27     if (wordMap.contains(str)) {
28       var count = wordMap(str).toInt + 1;
29       wordMap(str) = count;
30     } else {
31       wordMap += (str -> 1);
32     }
33 
34   }
35 
36   def main(args: Array[String]): Unit = {
37 
38     //读取文本
39     val text1 = Source.fromFile("D:/inputword/hello.txt", "gbk").getLines();
40     val text2 = Source.fromFile("D:/inputword/one.txt", "gbk").getLines();
41     val text3 = Source.fromFile("D:/inputword/two.txt", "gbk").getLines();
42 
43     /**
44      * 单词总数;35
45      * atguigu    12
46      * hadoop    7
47      * hello    5
48      * spark    6
49      * world    5
50      *
51      */
52 
53     /* //统计每个文件的总单词数
54     val res1 = List(text1,text2,text3).map(_.map(_.mkString).flatMap(_.split(" ")).map((_,1)).map(_._2).reduceLeft(_+_));
55     println(res1);//List(18, 10, 7)*/
56 
57     //精确统计三个文件中每个单词出现的总次数
58 
59     //如果数据源是iternator,最后一步应该使用foreach对元素进行操作
60     val res = List(text1, text2, text3).map(_.map(_.split(" ")).map((_, 1)).foreach(putMap(_)));
61 
62     //或者 flatMap把切割后的数组中的元素取出,变成单个的字符串
63     // val res = List(text1,text2,text3).map(_.flatMap(_.split(" ")).map((_,1)).foreach(putMap2(_)) )
64 
65     //遍历
66     for (key <- wordMap.keySet) {
67       println(key + ":" + wordMap(key));
68     }
69 
70   }
71 
72 }

 

 

二.在spark集群上运行wordcount

新建一个maven工程

pom.xml

 1 <dependencies>
 2           <dependency>
 3             <groupId>junit</groupId>
 4             <artifactId>junit</artifactId>
 5             <version>4.9</version>
 6         </dependency>
 7   
 8         <dependency>
 9             <groupId>org.apache.spark</groupId>
10             <artifactId>spark-core_2.11</artifactId>
11             <version>2.0.2</version>
12         </dependency>
13           
14         <dependency>
15             <groupId>org.apache.spark</groupId>
16             <artifactId>spark-sql_2.11</artifactId>
17             <version>2.0.2</version>
18         </dependency>
19           
20         <dependency>
21             <groupId>org.apache.spark</groupId>
22             <artifactId>spark-hive_2.11</artifactId>
23             <version>2.0.2</version>
24             <scope>provided</scope>
25         </dependency>
26         
27         <dependency>
28             <groupId>io.hops</groupId>
29             <artifactId>hadoop-client</artifactId>
30             <version>2.7.3</version>
31             <scope>provided</scope>
32         </dependency>
33   </dependencies>
34   
35   <build>
36     <plugins>
37             <plugin>
38                 <groupId>org.scala-tools</groupId>
39                 <artifactId>maven-scala-plugin</artifactId>
40                 <version>2.15.2</version>
41                 <executions>
42                     <execution>
43                         <goals>
44                             <goal>compile</goal>
45                             <goal>testCompile</goal>
46                         </goals>
47                     </execution>
48                 </executions>
49             </plugin>
50       </plugins>
51    </build>
 1 object WordCountCluster {
 2   def main(args: Array[String]): Unit = {
 3     
 4     val conf = new SparkConf().setAppName("WordCountCluster");
 5     
 6     val sc = new SparkContext(conf);
 7     
 8     val lines = sc.textFile("hdfs://hadoop002:9000/word.txt",1);
 9     
10     //切割
11     val fields = lines.flatMap(_.split(" "));
12     
13     //映射成元组
14     val wordTuple = fields.map((_,1));
15     
16     //统计                                 
17     val result = wordTuple.reduceByKey(_+_);
18     result.foreach(r => println(r._1+":"+r._2));
19     
20   }
21 }

导出jar并上传,同时上传word.txt到hdfs上

编写scalawordcount.sh

1 /opt/module/spark-2.0.2-bin-hadoop2.7/bin/spark-submit \
2 --class spark_base.wordcount.WordCountCluster \
3 --num-executors 3 \
4 --driver-memory 800m \
5 --executor-memory 1000m \
6 --executor-cores 3 \
7 /opt/module/spark-test/scala/scala-wc.jar \

chmod 777 scalawordcount.sh

./scalawordcount.sh

posted @ 2018-12-23 19:16  tele  阅读(516)  评论(0编辑  收藏  举报