Tekkaman

导航

 

证明3|n(n+1)(2n+1)

  n(n+1)(2n+1) => n(n+1)(n+2+n-1) => n(n+1)(n+2) + n(n+1)(n-1)

  因为n(n+1)(n+2)、n(n+1)(n-1)是连续的3个整数,故:

  3|n(n+1)(n+2) & 3|n(n+1)(n-1) =》3|n(n+1)(2n+1)

 

posted on 2014-05-15 21:39  Tekkaman  阅读(1094)  评论(0编辑  收藏  举报