train loss与test loss结果分析

train loss 不断下降,test loss不断下降,说明网络仍在学习;

train loss 不断下降,test loss趋于不变,说明网络过拟合;

train loss 趋于不变,test loss不断下降,说明数据集100%有问题;

train loss 趋于不变,test loss趋于不变,说明学习遇到瓶颈,需要减小学习率或批量数目;

train loss 不断上升,test loss不断上升,说明网络结构设计不当,训练超参数设置不当,数据集经过清洗等问题。

posted @ 2018-08-05 20:10  杨国峰  阅读(719)  评论(0编辑  收藏  举报