numpy的使用

numpy的使用

一、创建ndarray

1. 使用np.array()由python list创建

注意:

  • numpy默认ndarray的所有元素的类型是相同的
  • 如果传进来的列表中包含不同的类型,则统一为同一类型,优先级:str>float>int
import numpy as np

l = [1,2,3,4,5,6,7]
print(type(l))  # list

nd = np.array(l)
print(type(nd))  # numpy.ndarray
  1. 求和

    nd.sum()
    
  2. 求均方差

    nd.var()
    
  3. 求标准差

    nd.std()
    
  4. 随机数生成

    x = np.arange(0,100000,1)
    print(x)  # array([    0,     1,     2, ..., 99997, 99998, 99999])
    

2. 使用np的routines函数创建

  1. np.ones(shape, dtype=None, order='C')  # shape 形状 dtype 数据类型
    
    x = np.ones(shape = (5,5),dtype=np.int8)
    print(x)
    # array([[1, 1, 1, 1, 1],
    #       [1, 1, 1, 1, 1],
    #       [1, 1, 1, 1, 1],
    #       [1, 1, 1, 1, 1],
    #       [1, 1, 1, 1, 1]], dtype=int8)
    
  2. np.zeros(shape, dtype=float, order='C')
    
    x = np.zeros(shape = (2,3,4),dtype=np.float16)
    print(x)
    #array([[[0., 0., 0., 0.],
    #        [0., 0., 0., 0.],
    #        [0., 0., 0., 0.]],
    #
    #       [[0., 0., 0., 0.],
    #        [0., 0., 0., 0.],
    #        [0., 0., 0., 0.]]], dtype=float16)
    
  3. np.full(shape, fill_value, dtype=None, order='C')
    
    x = np.full(shape = (3,5),fill_value=3.14)
    print(x)
    #array([[3.14, 3.14, 3.14, 3.14, 3.14],
    #       [3.14, 3.14, 3.14, 3.14, 3.14],
    #       [3.14, 3.14, 3.14, 3.14, 3.14]])
    
  4. np.eye(N, M=None, k=0, dtype=float)  
    # 对角线为1其他的位置为0
    
    # 单位矩阵
    x = np.eye(N = 5)
    print(x)
    #array([[1., 0., 0., 0., 0.],
    #       [0., 1., 0., 0., 0.],
    #       [0., 0., 1., 0., 0.],
    #       [0., 0., 0., 1., 0.],
    #       [0., 0., 0., 0., 1.]])
    
  5. np.linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None)
    
    # 等差数列
    np.linspace(0,100,num = 21)
    #array([  0.,   5.,  10.,  15.,  20.,  25.,  30.,  35.,  40.,  45.,  50.,
    #        55.,  60.,  65.,  70.,  75.,  80.,  85.,  90.,  95., 100.])
    
  6. np.arange([start, ]stop, [step, ]dtype=None)
    
    np.arange(0,100,3)
    #array([ 0,  3,  6,  9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48,
    #       51, 54, 57, 60, 63, 66, 69, 72, 75, 78, 81, 84, 87, 90, 93, 96, 99])
    
  7. np.random.randint(low, high=None, size=None, dtype='l')
    
    np.random.randint(0,100,size = (5,5))
    #array([[ 4, 45, 66, 55, 42],
    #       [28,  5, 75, 71, 44],
    #       [ 0, 17, 89, 81, 66],
    #       [95, 96, 89, 31,  6],
    #       [75, 31, 51, 81, 38]])
    
  8. np.random.randn(d0, d1, ..., dn)  
    # 标准正态分布
    
    # normal 正常,正太
    # dimession 维度
    # 平均值是0,方差是1
    np.random.randn(4,5)
    #array([[-1.26185332,  0.29715466,  0.52047771, -1.55183841, -0.83663771],
    #       [ 0.40776138, -0.7380327 ,  0.22623508,  1.12275365, -0.38189704],
    #       [ 0.67816239,  0.91695635,  0.13487838,  0.13769114,  0.68426452],
    #       [ 0.00935704,  0.49087787, -0.34920945,  0.15688878, -0.98320155]])
    
  9. np.random.normal(loc=0.0, scale=1.0, size=None)
    
    np.random.normal(loc = 175,scale=10,size = 10000).round(2)
    #array([180.02, 162.26, 184.18, ..., 179.19, 182.83, 174.51])
    
  10. np.random.random(size=None)  
    # 生成0到1的随机数,左闭右开
    
    np.random.random(10)
    #array([0.80403643, 0.60631454, 0.22301424, 0.03813725, 0.14537585,
    #       0.00946211, 0.39063408, 0.5558176 , 0.39426771, 0.74874309])
    

二、ndarray的属性

4个必记参数:

  1. ndim:维度
  2. shape:形状(各维度的长度)
  3. size:总长度
  4. dtype:元素类型

三、ndarray的基本操作

1. 索引

一维与列表完全一致,多维时同理

nd2 = np.random.randint(0,150,size = (4,5))
print(nd2)
#array([[124,  91,  52,  23,  16],
#       [122, 106, 143,  88,  85],
#       [100,   0, 141, 101,  72],
#       [ 26,  93, 123,   4,  31]])

nd2[1,1]  # 106
nd2[2]  # array([100,   0, 141, 101,  72])

2. 切片

一维与列表完全一致,多维时同理

nd2
array([[124,  91,  52,  23,  16],
       [122, 106, 143,  88,  85],
       [100,   0, 141, 101,  72],
       [ 26,  93, 123,   4,  31]])      
nd2[0:3]
array([[124,  91,  52,  23,  16],
       [122, 106, 143,  88,  85],
       [100,   0, 141, 101,  72]])
nd2[-2:]
array([[100,   0, 141, 101,  72],
       [ 26,  93, 123,   4,  31]])
nd2[0:3,0:3]
array([[124,  91,  52],
       [122, 106, 143],
       [100,   0, 141]])
  • 将数据反转,例如[1,2,3]---->[3,2,1]

    nd3 = nd[:10]
    nd3
    array([189.04, 166.26, 172.39, 172.1 , 173.  , 176.82, 176.  , 177.74,
           162.46, 176.13])
    nd3[::-1]
    array([176.13, 162.46, 177.74, 176.  , 176.82, 173.  , 172.1 , 172.39,
           166.26, 189.04])
    ## 两个::进行切片
    

3. 变形

使用reshape函数,注意参数是一个tuple!

nd2
array([[124,  91,  52,  23,  16],
       [122, 106, 143,  88,  85],
       [100,   0, 141, 101,  72],
       [ 26,  93, 123,   4,  31]])
nd2.reshape(2,10)
array([[124,  91,  52,  23,  16, 122, 106, 143,  88,  85],
       [100,   0, 141, 101,  72,  26,  93, 123,   4,  31]])
nd2.reshape(5,4)
array([[124,  91,  52,  23],
       [ 16, 122, 106, 143],
       [ 88,  85, 100,   0],
       [141, 101,  72,  26],
       [ 93, 123,   4,  31]])

4. 级联

  1. np.concatenate()级联需要注意的点:
    • 级联的参数是列表:一定要加中括号或小括号
    • 维度必须相同
    • 形状相符
    • 【重点】级联的方向默认是shape这个tuple的第一个值所代表的维度方向
    • 可通过axis参数改变级联的方向
nd2
array([[124,  91,  52,  23,  16],
       [122, 106, 143,  88,  85],
       [100,   0, 141, 101,  72],
       [ 26,  93, 123,   4,  31]])
np.concatenate([nd2,nd2])
array([[124,  91,  52,  23,  16],
       [122, 106, 143,  88,  85],
       [100,   0, 141, 101,  72],
       [ 26,  93, 123,   4,  31],
       [124,  91,  52,  23,  16],
       [122, 106, 143,  88,  85],
       [100,   0, 141, 101,  72],
       [ 26,  93, 123,   4,  31]])
  1. np.hstacknp.vstack水平级联与垂直级联,处理自己,进行维度的变更

    nd1 = np.random.randint(0,150,size = (4,5))
    
    nd2 = np.random.randint(0,150,size = (2,5))
    
    nd3 = np.random.randint(0,150,size = (4,8))
    
    display(nd1,nd2,nd3)
    
    array([[ 64,  14, 132,   3,  19],
           [ 42,  79,  61, 142,  48],
           [ 38,  93, 149, 120,  36],
           [ 21,   6,  98,  67,  38]])
    array([[113,  15,   9,  31,  22],
           [  3,  94,  60, 116,  79]])
    array([[137,  13, 104,   7,  43, 136, 147,  12],
           [ 19,  36,  98,  39,  72,  38,  47, 128],
           [ 89, 149, 123, 149,  20,  73,  81,   6],
           [100,   6, 138, 127, 104,  28,  31,  61]])
    
    # horizontal 水平的,列数增加
    nd5 = np.hstack((nd1,nd3))
    
    # vertical 竖直方向增多,行数增多
    nd4 = np.vstack((nd1,nd2))
    

5. 切分

与级联类似,三个函数完成切分工作:

  • np.split 切分

    nd4
    array([[ 64,  14, 132,   3,  19],
           [ 42,  79,  61, 142,  48],
           [ 38,  93, 149, 120,  36],
           [ 21,   6,  98,  67,  38],
           [113,  15,   9,  31,  22],
           [  3,  94,  60, 116,  79]])
    
    np.split(nd4,indices_or_sections=3)
    [array([[ 64,  14, 132,   3,  19],
            [ 42,  79,  61, 142,  48]]),
     array([[ 38,  93, 149, 120,  36],
            [ 21,   6,  98,  67,  38]]),
     array([[113,  15,   9,  31,  22],
            [  3,  94,  60, 116,  79]])]
    
    np.split(nd4,indices_or_sections=[1,3])
    [array([[ 64,  14, 132,   3,  19]]),
     array([[ 42,  79,  61, 142,  48],
            [ 38,  93, 149, 120,  36]]),
     array([[ 21,   6,  98,  67,  38],
            [113,  15,   9,  31,  22],
            [  3,  94,  60, 116,  79]])]
    
  • np.vsplit 竖直轴切分

    np.vsplit(nd4,indices_or_sections=2)
    [array([[ 64,  14, 132,   3,  19],
            [ 42,  79,  61, 142,  48],
            [ 38,  93, 149, 120,  36]]),
     array([[ 21,   6,  98,  67,  38],
            [113,  15,   9,  31,  22],
            [  3,  94,  60, 116,  79]])]
    
  • np.hsplit 水平轴切割

    nd5
    array([[ 2, 47, 19, 21, 27],
           [21, 66, 29, 86, 48],
           [12, 78, 87, 82, 90],
           [87, 21,  3, 56, 78],
           [ 7, 18,  8, 64, 95],
           [46,  2, 62, 36, 11]])
    
    np.hsplit(nd5,indices_or_sections=[3])
    [array([[ 2, 47, 19],
            [21, 66, 29],
            [12, 78, 87],
            [87, 21,  3],
            [ 7, 18,  8],
            [46,  2, 62]]),
     array([[21, 27],
            [86, 48],
            [82, 90],
            [56, 78],
            [64, 95],
    

6. 副本

所有赋值运算不会为ndarray的任何元素创建副本。对赋值后的对象的操作也对原来的对象生效。

nd7 = nd5
id(nd7)
2174915628688
id(nd5)
2174915628688
  1. 可使用copy()函数创建副本

    nd8 = nd5.copy()
    id(nd8)
    2174923593888
    

四、ndarray的聚合操作

1. 求和np.sum

2. 最大最小值:np.max/ np.min

posted @ 2020-08-03 19:24  Techoc  阅读(146)  评论(0编辑  收藏  举报