Tensorflow基础:第一个训练模型
模型代码:
import tensorflow as tf from tensorflow.keras.layers import Dense, Flatten, Conv2D from tensorflow.keras import Model # 引入数据 fashion_mnist = tf.keras.datasets.fashion_mnist (train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data() class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat', 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot'] # 数据处理 train_images = train_images / 255.0 test_images = test_images / 255.0 # 创建模型 model = tf.keras.Sequential([ tf.keras.layers.Flatten(input_shape=(28, 28)), tf.keras.layers.Dense(128, activation='relu'), tf.keras.layers.Dense(10) ]) # 模型编译 model.compile(optimizer='adam', loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['accuracy']) # 训练模型 model.fit(train_images, train_labels, epochs=10, validation_data = (test_images, test_labels))
显示结果:
Epoch 1/10 1875/1875 [==============================] - 2s 705us/step - loss: 0.5012 - accuracy: 0.8230 - val_loss: 0.4400 - val_accuracy: 0.8402 Epoch 2/10 1875/1875 [==============================] - 2s 993us/step - loss: 0.3734 - accuracy: 0.8654 - val_loss: 0.4012 - val_accuracy: 0.8570 Epoch 3/10 1875/1875 [==============================] - 2s 825us/step - loss: 0.3359 - accuracy: 0.8770 - val_loss: 0.4043 - val_accuracy: 0.8519 Epoch 4/10 1875/1875 [==============================] - 1s 617us/step - loss: 0.3126 - accuracy: 0.8848 - val_loss: 0.3465 - val_accuracy: 0.8774 Epoch 5/10 1875/1875 [==============================] - 1s 613us/step - loss: 0.2929 - accuracy: 0.8923 - val_loss: 0.3785 - val_accuracy: 0.8618 Epoch 6/10 1875/1875 [==============================] - 1s 693us/step - loss: 0.2782 - accuracy: 0.8977 - val_loss: 0.3642 - val_accuracy: 0.8747 Epoch 7/10 1875/1875 [==============================] - 1s 778us/step - loss: 0.2663 - accuracy: 0.9009 - val_loss: 0.3756 - val_accuracy: 0.8638 Epoch 8/10 1875/1875 [==============================] - 1s 686us/step - loss: 0.2580 - accuracy: 0.9042 - val_loss: 0.3553 - val_accuracy: 0.8754 Epoch 9/10 1875/1875 [==============================] - 1s 684us/step - loss: 0.2468 - accuracy: 0.9079 - val_loss: 0.3338 - val_accuracy: 0.8844 Epoch 10/10 1875/1875 [==============================] - 1s 708us/step - loss: 0.2375 - accuracy: 0.9116 - val_loss: 0.3471 - val_accuracy: 0.8811 <keras.src.callbacks.History at 0x1541f0f10>
__EOF__

本文作者:techgy
本文链接:https://www.cnblogs.com/techgy/p/18333055.html
关于博主:I am a good person
版权声明:本博客所有文章除特别声明外,均采用 BY-NC-SA 许可协议。转载请注明出处!
声援博主:如果您觉得文章对您有帮助,可以点击文章右下角【推荐】一下。您的鼓励是博主的最大动力!
本文链接:https://www.cnblogs.com/techgy/p/18333055.html
关于博主:I am a good person
版权声明:本博客所有文章除特别声明外,均采用 BY-NC-SA 许可协议。转载请注明出处!
声援博主:如果您觉得文章对您有帮助,可以点击文章右下角【推荐】一下。您的鼓励是博主的最大动力!
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· TypeScript + Deepseek 打造卜卦网站:技术与玄学的结合
· Manus的开源复刻OpenManus初探
· AI 智能体引爆开源社区「GitHub 热点速览」
· 从HTTP原因短语缺失研究HTTP/2和HTTP/3的设计差异
· 三行代码完成国际化适配,妙~啊~