Bias(偏差)、Variance(方差)
偏差:是指一个模型的在不同训练集上的平均性能和最优模型的差异。偏差可以用来衡量一个模型的拟合能力。偏差越大,预测值平均性能越偏离最优模型。偏差衡量模型的预测能力,对象是一个在不同训练集上模型,形容这个模型平均性能对最优模型的预测能力。
方差:( variance)描述的是 一个模型在不同训练集上的差异,描述的是一个模型在不同训练集之间的差异,表示模型的泛化能力,方差越小,模型的泛化能力越强。可以用来衡量一个模型是否容易过拟合。预测值的变化范围,离散程度,也就是离其期望值的距离。方差越大,预测结果数据的分布越散。方差用于衡量一个模型在不同训练集之间的关系,和最优模型无关。对象是不同训练集上的一个模型,表示选取不同的训练集,得出的模型之间的差异性。
记住:方差和偏差都是衡量模型的,方差表示选取不同的训练集,训练出模型的差异有多大,而偏差是指一个模型在不同训练集上的平均性能和最优模型的差异。
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】凌霞软件回馈社区,博客园 & 1Panel & Halo 联合会员上线
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】博客园社区专享云产品让利特惠,阿里云新客6.5折上折
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步