回归问题及应用
主要内容:
线性回归
定义与问题引入
损失函数
梯度下降
过拟合与正则化
逻辑回归
定义与问题引入
损失函数
梯度下降与正则化
线性回归
有监督学习=>学习样本为D={(xi,yi)}Ni=1
逻辑回归
损失函数:
这幅图说明这种损失函数不能得到想要的结果
因此采用该损失函数:
正则化:
上面公式是写在一起的损失函数,后面的是添加了正则化的函数。
二分类和多分类问题:
很简单
七月在线学习笔记
__EOF__

本文作者:techgy
本文链接:https://www.cnblogs.com/techgy/p/12905627.html
关于博主:I am a good person
版权声明:本博客所有文章除特别声明外,均采用 BY-NC-SA 许可协议。转载请注明出处!
声援博主:如果您觉得文章对您有帮助,可以点击文章右下角【推荐】一下。您的鼓励是博主的最大动力!
本文链接:https://www.cnblogs.com/techgy/p/12905627.html
关于博主:I am a good person
版权声明:本博客所有文章除特别声明外,均采用 BY-NC-SA 许可协议。转载请注明出处!
声援博主:如果您觉得文章对您有帮助,可以点击文章右下角【推荐】一下。您的鼓励是博主的最大动力!
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
· TypeScript + Deepseek 打造卜卦网站:技术与玄学的结合
· Manus的开源复刻OpenManus初探
· AI 智能体引爆开源社区「GitHub 热点速览」
· 从HTTP原因短语缺失研究HTTP/2和HTTP/3的设计差异
· 三行代码完成国际化适配,妙~啊~