摘要:
原文链接:http://tecdat.cn/?p=21757 时间序列模型根据研究对象是否随机分为确定性模型和随机性模型两大类。 随机时间序列模型即是指仅用它的过去值及随机扰动项所建立起来的模型,建立具体的模型,需解决如下三个问题模型的具体形式、时序变量的滞后期以及随机扰动项的结构。 μ是yt的均值 阅读全文
摘要:
原文链接:http://tecdat.cn/?p=21602 正则化(regularization) 正则化路径是在正则化参数lambda的值网格上计算套索LASSO或弹性网路惩罚的正则化路径。该算法速度快,可以利用输入矩阵x中的稀疏性,拟合线性、logistic和多项式、poisson和Cox回归 阅读全文
摘要:
原文链接:http://tecdat.cn/?p=21573 介绍 ARIMA模型是时间序列预测中一种常用的统计方法。指数平滑和ARIMA模型是时间序列预测中应用最为广泛的两种方法,它们是解决这一问题的补充方法。指数平滑模型是基于对数据趋势和季节性的描述,而ARIMA模型则是为了描述数据的自相关性。 阅读全文
摘要:
原文链接:http://tecdat.cn/?p=21545 示例1:使用MCMC的指数分布采样 任何MCMC方案的目标都是从“目标”分布产生样本。在这种情况下,我们将使用平均值为1的指数分布作为我们的目标分布。所以我们从定义目标密度开始: target = function(x){ if(x<0) 阅读全文
摘要:
原文链接:http://tecdat.cn/?p=21506 当采用两种状态时,单转换函数PSTR模型具有两个变量: 我们的经验方法的基础包括评估N个国家的资本流动性。相应的模型定义如下: 其中,Iit是第i个国家在时间t时观察到的国内投资与GDP的比率,Sit是国内储蓄与GDP的比率,αi表示单个 阅读全文