拓端数据tecdat|R语言ARIMA,SARIMA预测道路交通流量时间序列:季节性、周期性

原文链接:http://tecdat.cn/?p=20434

 

本文从实践角度讨论了季节性单位根。我们考虑一些时间序列 ,例如道路上的交通流量,

  1.  
     
  2.  
    > plot(T,X,type="l")
  3.  
    > reg=lm(X~T)
  4.  
    > abline(reg,col="red")

 

如果存在趋势,我们应该将其删除,然后处理残差 

  1.  
    > Y=residuals(reg)
  2.  
    > acf(Y,lag=36,lwd=3)

我们可以看到这里有一些季节性。第一个策略可能是假设存在季节性单位根,因此我们考虑 ,我们尝试找到ARMA模型。考虑时间序列的自相关函数,

  1.  
    > Z=diff(Y,12)
  2.  
    > acf(Z,lag=36,lwd=3)

 

或偏自相关函数

 

第一个图可能建议MA(1),而第二个图可能建议AR(1)时间序列。我们都尝试。

  1.  
     
  2.  
    arima
  3.  
    Coefficients:
  4.  
    ma1 intercept
  5.  
    -0.2367 -583.7761
  6.  
    s.e. 0.0916 254.8805
  7.  
     
  8.  
    sigma^2 estimated as 8071255: log likelihood = -684.1, aic = 1374.2

可以认为是白噪声(如果您不确定,请尝试 Box-Pierce或Ljung-Box 测试)。

  1.  
     
  2.  
    arima
  3.  
    Coefficients:
  4.  
    ar1 intercept
  5.  
    -0.3214 -583.0943
  6.  
    s.e. 0.1112 248.8735
  7.  
     
  8.  
    sigma^2 estimated as 7842043: log likelihood = -683.07, aic = 1372.15

也可以视为白噪声。到目前为止,我们有

对于一些白噪声 。这表明以下的SARIMA结构 

  1.  
     
  2.  
    arima
  3.  
    Coefficients:
  4.  
    ar1
  5.  
    -0.2715
  6.  
    s.e. 0.1130
  7.  
     
  8.  
    sigma^2 estimated as 8412999: log likelihood = -685.62, aic = 1375.25

现在,如果我们认为我们没有季节性单位根,而在AR结构中只是一个大的自回归系数。让我们尝试类似

自然而然的猜测是该系数应该(可能)接近于1。让我们尝试一下

  1.  
     
  2.  
    arima
  3.  
    Coefficients:
  4.  
    ar1 sar1 intercept
  5.  
    -0.1629 0.9741 -684.9455
  6.  
    s.e. 0.1170 0.0115 3064.4040
  7.  
     
  8.  
    sigma^2 estimated as 8406080: log likelihood = -816.11, aic = 1640.21

这与我们先前(以某种方式)获得的结果具有可比性,因此我们可以假设该模型是一个有趣的模型。我们将进一步讨论:第一个系数可能是不重要的。

这两个模型有什么区别?

从(非常)长期的角度来看,模型是完全不同的:一个模型是平稳的,因此预测将趋向于平均值,而另一个模型则是按季节的,因此置信区间将增加。我们得到

> pre(model2,600,b=60000)

 

对于平稳的

> prev(model3,600,b=60000)

 

但是,使用这些模型进行的预测仅适用于短期范围。在这种情况下,这里的预测几乎相同,

> pre(model2,36,b=60000)

 

> pre(model3,36,b=60000)

 

现在,如果我们回到第二个模型,自回归系数可能被认为是不重要的。如果我们将其删除怎么样?

  1.  
     
  2.  
    Call:
  3.  
    seasonal = list(order = c(1, 0, 0)
  4.  
    Coefficients:
  5.  
    sar1 intercept
  6.  
    0.9662 -696.5661
  7.  
    s.e. 0.0134 3182.3017
  8.  
     
  9.  
    sigma^2 estimated as 8918630: log likelihood = -817.03, aic = 1640.07

如果我们看一下(短期)预测,我们得到

> pre(model,36,b=32000)

 

有什么区别吗?如果我们看一下预测结果数字,我们会得到

数字不同,但差异不大(请注意置信区间的大小)。这可以解释为什么在R中,当我们在自回归过程时 ,得到一个模型要估计的参数https://latex.codecogs.com/gif.latex?p,即使其中不重要,我们通常也会保留它们来预测。


最受欢迎的见解

1.用于NLP的Python:使用Keras的多标签文本LSTM神经网络分类

2.Python中利用长短期记忆模型LSTM进行时间序列预测分析 – 预测电力消耗数据

3.python在Keras中使用LSTM解决序列问题

4.Python中用PyTorch机器学习分类预测银行客户流失模型

5.R语言多元Copula GARCH 模型时间序列预测

6.在r语言中使用GAM(广义相加模型)进行电力负荷时间序列分析

7.R语言中ARMA,ARIMA(Box-Jenkins),SARIMA和ARIMAX模型用于预测时间序列数

8.R语言估计时变VAR模型时间序列的实证研究分析案例

9.用广义加性模型GAM进行时间序列分析

posted @ 2021-02-23 12:30  拓端tecdat  阅读(541)  评论(0编辑  收藏  举报