拓端tecdat|R语言编程指导中GLM(广义线性模型),非线性和异方差可视化分析
原文链接:http://tecdat.cn/?p=13839
上周在 非人寿保险课程中,我们了解了广义线性模型的理论,强调了两个重要组成部分
-
链接函数(这实际上是在预测模型的关键)
-
分布或方差函数
考虑数据集
线性模型
假设残差独立且具有相同的方差。如果我们可视化线性回归,会看到:
这里的想法(在GLM中)是假设
它将基于某些误差项生成与先前描述的模型相同的模型。该模型可以在下面看到,
这里确实有两部分:平均值的线性增加
另一方面,如果我们假设泊松回归,
我们有这样的结果
有两件事同时发生了变化:我们的模型不再是线性的,而是指数的
如果改编前面的代码,我们得到
问题是,当我们从线性模型引入Poisson回归时,我们改变了两件事。因此,让我们看看当我们分别更改两个组件时会发生什么。首先,我们可以使用高斯模型来更改链接函数,但是这次是乘法模型(具有对数链接函数)
这次是非线性的。或者我们可以在Poisson回归中更改链接函数,以获得线性模型,但异方差
因此,这基本上就是GLM的目的。
▍关注我们
【大数据部落】第三方数据服务提供商,提供全面的统计分析与数据挖掘咨询服务,为客户定制个性化的数据解决方案与行业报告等。
▍咨询链接:http://y0.cn/teradat
▍联系邮箱:3025393450@qq.com