拓端tecdat|R语言编程指导预测人口死亡率:用李·卡特模型、非线性模型进行平滑估计

原文链接:http://tecdat.cn/?p=13663

 


 

今天早上,我和同事一起分析死亡率。我们在研究人口数据集,可以观察到很多波动性。我们得到这样的结果:

 

由于我们缺少一些数据,因此我们想使用一些广义非线性模型。因此,让我们看看如何获​​得死亡率曲面图的平滑估计。我们编写一些代码。


D=DEATH$Male
E=EXPO$Male
A=as.numeric(as.character(DEATH$Age))
Y=DEATH$Year
I=(A<100)
base=data.frame(D=D,E=E,Y=Y,A=A)
subbase=base[I,]
subbase=subbase[!is.na(subbase$A),]

第一个想法可以是使用Poisson模型,其中死亡率是年龄和年份的平稳函数,类似于

​可以使用


persp(vZ,theta=-30,col="green",shade=TRUE,xlab="Ages (0-100)",
ylab="Years (1900-2005)",zlab="Mortality rate (log)")

死亡率曲面图

 

还可以提取年份的平均值,这是​ Lee-Carter模型中系数的解释  

predAx=function(a) mean(predict(regbsp,newdata=data.frame(A=a,
Y=seq(min(subbase$Y),max(subbase$Y)),E=1)))
plot(seq(0,99),Vectorize(predAx)(seq(0,99)),col="red",lwd=3,type="l")

我们有以下平滑的死亡率

 

回顾下李·卡特模型是

可以使用以下方法获得参数估计值

persp(vZ,theta=-30,col="green",shade=TRUE,xlab="Ages (0-100)",
ylab="Years (1900-2005)",zlab="Mortality rate (log)")

粗略的死亡率曲面图是

 

有以下  ​ 系数。

plot(seq(1,99),coefficients(regnp)[2:100],col="red",lwd=3,type="l")

 

这里我们有很多系数,但是,在较小的数据集上,我们具有更多的可变性。我们可以平滑李·卡特模型: 

 代码片段


persp(vZ,theta=-30,col="green",shade=TRUE,xlab="Ages (0-100)", 
ylab="Years (1900-2005)",zlab="Mortality rate (log)")

现在的死亡人数是

 

得出多年来随年龄变化的平均死亡率,

BpA=bs(seq(0,99),knots=knotsA,Boundary.knots=range(subbase$A),degre=3)
Ax=BpA%*%coefficients(regsp)[2:8]
plot(seq(0,99),Ax,col="red",lwd=3,type="l")

 

然后,我们可以使用样条函数的平滑参数,并查看对死亡率曲面的影响

persp(vZ,theta=-30,col="green",shade=TRUE,xlab="Ages (0-100)",
ylab="Years (1900-2005)",zlab="Mortality rate (log)")

 

posted @ 2020-06-02 16:47  拓端tecdat  阅读(786)  评论(0编辑  收藏  举报