拓端tecdat|R语言编程指导用神经网络改进Nelson-Siegel模型拟合收益率曲线分析
原文链接:http://tecdat.cn/?p=11878
在先前我们提供了Nelson-Siegel模型收敛失败的示例,我们已经展示了它的一些缺陷。
蒙特卡洛模拟帮助我们理解:
我们要做的是:我们从一些收益率曲线开始,然后逐步地随机修改收益率,最后尝试拟合NS模型以新的收益。因此我们对此进行了模拟。
请注意,对于Nelson-Siegel模型,此Monte-Carlo模拟在某种意义上是“仁慈的”,因为我们始终假定前一步的收益(旧收益率) 与NS曲线完全匹配。但是,即使如此仁慈也无法完全避免麻烦。我们如何发现这些麻烦?在每一步中,我们计算两条相邻曲线之间的最大距离(supremum-norm):
最后,我们仅找到到上一条曲线的最大距离的步骤,这就是收敛失败的示例。
好的,发现问题了,但是该怎么办呢?maxDistanceArray的概率密度 如下所示:
不足与展望:尽管我们在两种情况下均对数据进行了归一化和平均化,但是模型波动性的线性变化对尾部分位数具有很高的非线性影响。
那么,我们是否需要一个更复杂的AI模型?
▍关注我们
【大数据部落】第三方数据服务提供商,提供全面的统计分析与数据挖掘咨询服务,为客户定制个性化的数据解决方案与行业报告等。
▍咨询链接:http://y0.cn/teradat
▍联系邮箱:3025393450@qq.com