MIT 6.5840 MapReduce Lab

MapReduce

MapReduce 是一种编程模型,其思想是让程序员通过编写简单的 Map 和 Reduce 程序就能完成分布式系统的任务,而不需要关注分布式的具体细节。

用户自定义的Map函数接受一个 key/value pair 的输入值,然后产生一个中间 key/value pair 值的集合。MapReduce 库把所有具有相同中间 key 值 I 的中间 value 值集合在一起后传递给 Reduce 函数。

用户自定义的 Reduce 函数接受一个中间 key 的值 I 和相关的一个 value 值的集合。Reduce 函数合并这些 value 值,形成一个较小的 value 值的集合。通常来说,每次 Reduce 函数调用只产生 0 或 1 个输出 value 值。通常我们通过一个迭代器把中间 value 值提供给 Reduce 函数,这样我们就可以处理无法全部放入内存中的大量的 value 值的集合(迭代器可看为一个容器,所以数据放入一个容器中,Reduce 函数就从这个容器中取数据即可)。

例如:计算一个大的文档集合中每个单词出现的次数,Map 和 Reduce 伪代码如下:

map(String key, String value) {
// key: document name
// value: document contents
for each word w in value:
EmitIntermediate(w, "1");
}

reduce(String key, Iterator values) {
// key: a word
// values: a list of counts
int result = 0;
for each v in values:
result += ParseInt(v);
Emit(AsString(result));
}

MapReduce 框架原理

论文中描述的 MapReduce 框架的具体原理如下:

MapReduce

当用户程序调用 MapReduce 时,会发生下面一系列动作:

  • 用户程序首先调用的 MapReduce 库将输入文件分成M个数据片度,每个数据片段的大小一般从 16MB 到 64MB (可以通过可选的参数来控制每个数据片段的大小)。然后用户程序在机群中创建大量的程序副本。

  • 这些程序副本中的有一个特殊的程序 master。副本中其它的程序都是 worker 程序,由 master 分配任务。有 M 个 Map 任务和 R 个 Reduce 任务将被分配,master 将一个 Map 任务或 Reduce 任务分配给一个空闲的 worker。

  • 被分配了 map 任务的 worker 程序读取相关的输入数据片段,从输入的数据片段中解析出 key/value pair,然后把 key/value pair 传递给用户自定义的 Map 函数,由 Map函数生成并输出的中间k ey/value pair,并缓存在内存中。

  • 缓存中的 key/value pair 通过分区函数分成 R 个区域,之后周期性的写入到本地磁盘上。缓存的 key/value pair 在本地磁盘上的存储位置将被回传给 master,由 master 负责把这些存储位置再传送给 Reduce worker。

  • 当 Reduce worker 程序接收到 master 程序发来的数据存储位置信息后,使用 RPC 从 Map worker 所在主机的磁盘上读取这些缓存数据。当 Reduce worker 读取了所有的中间数据后,通过对 key 进行排序后使得具有相同 key 值的数据聚合在一起。由于许多不同的 key 值会映射到相同的 Reduce 任务上,因此必须进行排序。如果中间数据太大无法在内存中完成排序,那么就要在外部进行排序。

  • Reduce worker 程序遍历排序后的中间数据,对于每一个唯一的中间 key 值,Reduce worker 程序将这个 key 值和它相关的中间 value 值的集合传递给用户自定义的 Reduce函数。Reduce 函数的输出被追加到所属分区的输出文件。

  • 当所有的 Map 和 Reduce 任务都完成之后,master 唤醒用户程序。在这个时候,在用户程序里的对 MapReduce 调用才返回。

First step

在一开始,目标是至少先让代码跑起来。

首先看懂 mrsequential.go 的逻辑,看懂 coordinator 和 worker 的 rpc 交互流程。然后实现 coordinator 分配任务后 worker 直接把任务打印出来。

worker 通过 rpc 调用 coordinator 的 AssignJob 方法,获取任务,然后直接打印出来。

在 rpc.go 中,定义用到的 rpc 相关的结构体:

type JobType int

const (
    Map JobType = iota
    Reduce
)

// worker ask for a job
type JobArgs struct{}

// the coordinator reply for the job
type JobReply struct {
    JobArgs interface{}
    JobType JobType 
}

coordinator.go

type JobType int

const (
    Map JobType = iota
    Reduce
)

// worker ask for a job
type JobArgs struct{}

// the coordinator reply for the job
type JobReply struct {
    JobArgs interface{}
    JobType JobType
}

func (c *Coordinator) AssignJob(args *JobArgs, reply *JobReply) error {
    if c.assigned < len(c.files) {
        reply.JobArgs = c.files[c.assigned]
        c.assigned++
        reply.JobType = Map
    } else {
        reply.JobType = Reduce
        c.nReduce--
    }
    return nil
}

worker.go

func Worker(mapf func(string, string) []KeyValue,
    reducef func(string, []string) string,
) {
    args := new(JobArgs)
    reply := new(JobReply)
    ok := call("Coordinator.AssignJob", &args, &reply)
    if !ok {
        fmt.Println("call failed!")
        return
    } else {
        switch reply.JobType {
        case Map:
            file := reply.JobArgs
            fmt.Println("Map: ", file)
        case Reduce:
            fmt.Println("Reduce: ", reply.JobArgs)
        }
    }
}

初步实现(暂不考虑worker出现故障、超时以及一些并发引起的问题,先实现成功调用用户 Map 和 Reduce 方法)

定义结构体用于传递 Map 和 Reduce 需要的参数

type MapWorkerArgs struct {
    Files    []string
    WorkerId int // worker id
    NReduce  int // number of reduce workers
}

type ReduceWorkerArgs struct {
    WorkerId int // worker id
}
  • 暂时考虑对整个 AssignJob 加互斥锁,若发现这样加锁不能满足要求再行改进。

  • Map worker 将中间文件的文件名传递给 coordinator。

  • coordinator 将需要 Reduce worker 处理的中间文件的文件名传递给对应的 Reduce worker。

rpc.go

package mr

//
// RPC definitions.
//
// remember to capitalize all names.
//

import (
    "os"
    "strconv"
)

// Add your RPC definitions here.

// the job type enum, Map and Reduce
type JobType int

const (
    Map JobType = iota
    Reduce
)

// worker ask for a job
type JobArgs struct{}

// the coordinator reply for the job
type JobReply struct {
    JobType    JobType
    MapArgs    MapWorkerArgs
    ReduceArgs ReduceWorkerArgs
}

type PassFileNamesArgs struct {
    IntermediateFileNames []string
}

type PassFileNamesReply struct{}

// Cook up a unique-ish UNIX-domain socket name
// in /var/tmp, for the coordinator.
// Can't use the current directory since
// Athena AFS doesn't support UNIX-domain sockets.
func coordinatorSock() string {
    s := "/var/tmp/5840-mr-"
    s += strconv.Itoa(os.Getuid())
    return s
}

coordinator.go

package mr

import (
    "fmt"
    "log"
    "net"
    "net/http"
    "net/rpc"
    "os"
    "sync"
)

type Coordinator struct {
    files           []string
    assigned        int // number of files assigned
    nReduce         int // number of reduce workers
    mapWorkerNum    int // number of map workers created
    reduceWorkerNum int // number of reduce workers created
    // the file names of the intermediate files
    // index i is for the No.i Reduce worker
    intermediateFileNames [][]string
    mutexLock             sync.Mutex
}

// the arguments to pass to the mapWorker
type MapWorkerArgs struct {
    File     string
    WorkerId int // worker id
    NReduce  int // number of reduce workers
}

// the arguments to pass to the reduceWorker
type ReduceWorkerArgs struct {
    WorkerId              int      // worker id
    IntermediateFileNames []string // files for reduce workers to work on
}

// Your code here -- RPC handlers for the worker to call.

func (c *Coordinator) GetJob(args *JobArgs, reply *JobReply) error {
    c.mutexLock.Lock()
    defer c.mutexLock.Unlock()
    if c.assigned < len(c.files) {
        reply.MapArgs.WorkerId = c.mapWorkerNum
        reply.MapArgs.File = c.files[c.assigned]
        reply.MapArgs.NReduce = c.nReduce
        c.mapWorkerNum++
        c.assigned++
        reply.JobType = Map
    } else if c.nReduce > c.reduceWorkerNum {
        reply.JobType = Reduce
        reply.ReduceArgs.WorkerId = c.reduceWorkerNum
        reply.ReduceArgs.IntermediateFileNames = c.intermediateFileNames[c.reduceWorkerNum]
        c.reduceWorkerNum++
    } else {
        fmt.Println("All Reduce workers are already assigned")
    }
    return nil
}

func (c *Coordinator) PassFileNames(args *PassFileNamesArgs, reply *PassFileNamesReply) error {
    c.mutexLock.Lock()
    defer c.mutexLock.Unlock()
    intermediateFileNames := args.IntermediateFileNames
    for i, intermediateFileName := range intermediateFileNames {
        c.intermediateFileNames[i] = append(c.intermediateFileNames[i], intermediateFileName)
    }
    return nil
}

func (c *Coordinator) server() {
    rpc.Register(c)
    rpc.HandleHTTP()
    // l, e := net.Listen("tcp", ":1234")
    sockname := coordinatorSock()
    os.Remove(sockname)
    l, e := net.Listen("unix", sockname)
    if e != nil {
        log.Fatal("listen error:", e)
    }
    go http.Serve(l, nil)
}

// main/mrcoordinator.go calls Done() periodically to find out
// if the entire job has finished.
func (c *Coordinator) Done() bool {
    ret := false

    // Your code here.

    return ret
}

// create a Coordinator.
// main/mrcoordinator.go calls this function.
// nReduce is the number of reduce tasks to use.
func MakeCoordinator(files []string, nReduce int) *Coordinator {
    c := Coordinator{}

    // Your code here.
    c.assigned = 0
    c.files = files
    c.mapWorkerNum = 0
    c.reduceWorkerNum = 0
    c.nReduce = nReduce
    c.intermediateFileNames = make([][]string, nReduce)

    c.server()
    return &c
}

worker.go

package mr

import (
    "encoding/json"
    "fmt"
    "hash/fnv"
    "io"
    "log"
    "net/rpc"
    "os"
    "plugin"
    "sort"
)

// Map functions return a slice of KeyValue.
type KeyValue struct {
    Key   string
    Value string
}

// for sorting by key.
type ByKey []KeyValue

// for sorting by key.
func (a ByKey) Len() int           { return len(a) }
func (a ByKey) Swap(i, j int)      { a[i], a[j] = a[j], a[i] }
func (a ByKey) Less(i, j int) bool { return a[i].Key < a[j].Key }

// use ihash(key) % NReduce to choose the reduce
// task number for each KeyValue emitted by Map.
func ihash(key string) int {
    h := fnv.New32a()
    h.Write([]byte(key))
    return int(h.Sum32() & 0x7fffffff)
}

// load the application Map and Reduce functions
// from a plugin file, e.g. ../mrapps/wc.so
func loadPlugin(filename string) (func(string, string) []KeyValue, func(string, []string) string) {
    p, err := plugin.Open(filename)
    if err != nil {
        log.Fatalf("cannot load plugin %v", filename)
    }
    xmapf, err := p.Lookup("Map")
    if err != nil {
        log.Fatalf("cannot find Map in %v", filename)
    }
    mapf := xmapf.(func(string, string) []KeyValue)
    xreducef, err := p.Lookup("Reduce")
    if err != nil {
        log.Fatalf("cannot find Reduce in %v", filename)
    }
    reducef := xreducef.(func(string, []string) string)

    return mapf, reducef
}

func mapWorker(args MapWorkerArgs) {
    nReduce := args.NReduce
    file, err := os.Open(args.File)
    if err != nil {
        log.Fatalf("cannot open %v", args.File)
    }
    content, err := io.ReadAll(file)
    if err != nil {
        log.Fatalf("cannot read %v", args.File)
    }
    file.Close()
    mapf, _ := loadPlugin(os.Args[1])
    kva := mapf(args.File, string(content))
    // divide the key value pairs for each reduce workers
    kvalist := make([][]KeyValue, nReduce)
    intermediateFileNameList := make([]string, nReduce)
    for _, kv := range kva {
        num := ihash(kv.Key) % nReduce // the reduce task number for the KeyValue pair
        kvalist[num] = append(kvalist[num], kv)
    }
    // write the divided key value pairs to disk
    for i, kva := range kvalist {
        intermediateFileName := fmt.Sprintf("mr-%d-%d", args.WorkerId, i)
        intermediateFileNameList[i] = intermediateFileName
        intermediateFile, err := os.Create(intermediateFileName)
        if err != nil {
            log.Fatalf("cannot create %v", intermediateFileName)
        }
        enc := json.NewEncoder(intermediateFile)
        for _, kv := range kva {
            err := enc.Encode(&kv)
            if err != nil {
                log.Fatalf("cannot encode %v", kv)
            }
        }
    }
    // pass the address (file name) of the key value pairs file to the master
    pargs := new(PassFileNamesArgs)
    preply := new(PassFileNamesReply)
    pargs.IntermediateFileNames = intermediateFileNameList
    ok := call("Coordinator.PassFileNames", &pargs, &preply)
    if !ok {
        fmt.Println("call PassFileNames failed")
    }
}

func reduceWorker(args ReduceWorkerArgs) {
    intermediateFileNames := args.IntermediateFileNames
    _, reducef := loadPlugin(os.Args[1])
    intermediate := make([]KeyValue, 0)
    // read key value pairs from intermediate files
    for _, fileName := range intermediateFileNames {
        intermediateFile, err := os.Open(fileName)
        if err != nil {
            log.Fatalf("cannot open %v", fileName)
        }
        dec := json.NewDecoder(intermediateFile)
        for {
            var kv KeyValue
            if err := dec.Decode(&kv); err != nil {
                break
            }
            intermediate = append(intermediate, kv)
        }
        intermediateFile.Close()
    }
    sort.Sort(ByKey(intermediate))
    // create output file
    oname := fmt.Sprintf("mr-out-%v", args.WorkerId)
    ofile, _ := os.Create(oname)
    //
    // call Reduce on each distinct key in intermediate[],
    // and print the result to ofile
    //
    i := 0
    for i < len(intermediate) {
        j := i + 1
        for j < len(intermediate) && intermediate[j].Key == intermediate[i].Key {
            j++
        }
        values := []string{}
        for k := i; k < j; k++ {
            values = append(values, intermediate[k].Value)
        }
        output := reducef(intermediate[i].Key, values)

        // this is the correct format for each line of Reduce output.
        fmt.Fprintf(ofile, "%v %v\n", intermediate[i].Key, output)

        i = j
    }
}

// main/mrworker.go calls this function.
func Worker(mapf func(string, string) []KeyValue,
    reducef func(string, []string) string,
) {
    args := new(JobArgs)
    reply := new(JobReply)
    ok := call("Coordinator.GetJob", &args, &reply)
    if !ok {
        fmt.Println("call GetJob failed!")
        return
    } else {
        switch reply.JobType {
        case Map:
            fmt.Printf("Running Map No.%d\n", reply.MapArgs.WorkerId)
            mapWorker(reply.MapArgs)
        case Reduce:
            fmt.Printf("Running Reduce No.%d\n", reply.ReduceArgs.WorkerId)
            reduceWorker(reply.ReduceArgs)
        }
    }
}

// send an RPC request to the coordinator, wait for the response.
// usually returns true.
// returns false if something goes wrong.
func call(rpcname string, args interface{}, reply interface{}) bool {
    // c, err := rpc.DialHTTP("tcp", "127.0.0.1"+":1234")
    sockname := coordinatorSock()
    c, err := rpc.DialHTTP("unix", sockname)
    if err != nil {
        log.Fatal("dialing:", err)
    }
    defer c.Close()

    err = c.Call(rpcname, args, reply)
    if err == nil {
        return true
    }

    fmt.Println(err)
    return false
}

对故障和超时的 worker 的识别和处理,以及一些并发相关问题的解决

  • 对每一个 worker,coordinator 在分配了任务之后等待10秒,若超出10秒 worker 没有完成任务,就把这个 worker 视为 crashed,将任务分配给其他的 worker。

  • Reduce worker 需要等 Map 全部完成才能开始,在 Map 全部结束之前,利用 channel 阻塞 Reduce worker 的 RPC 调用。

  • 定义两个数组用来显示 map 和 reduce 任务的完成情况。两个 int 类型的变量记录尚未完成的 map 和 reduce 任务的数量,Done 函数通过判断这两个变量来判断 coordinator 任务是否结束。

  • 利用 channel 作为队列,在 coordinator 中定义两个队列,用于存放后面等待分配的 map 和 reduce 任务。分配之后 coordinator 等待10秒,10 秒后任务没有完成就重新把任务放进队列中。

  • coordinator 在完成对 worker 的调用后新建一个 go routine,等待10秒后判断任务是否已经完成。

  • worker 在任务成功完成后调用一个 RPC 函数告知 coordinator 任务已完成。

一些注意事项(踩过的坑)

  • 在编写程序时注意函数和变量以大写开头和以小写开头的区别,RPC 模块涉及到的所有函数,传递的变量(包括结构体内部的变量)开头字母都要大写。

  • 使用 go run -race 来检测并发相关的问题。

  • 注意,worker 在执行完一个任务之后应该继续向 coordinator 请求下一个任务,而不是直接返回。

  • 在 worker 中 sleep 一小段时间来避免所有任务被一个 worker 请求而不能通过 parallelism test。

  • Reduce worker 读取中间文件失败不需要退出,直接尝试读取下一个文件,Map worker 确实可能对于某个 Reduce worker 不产生中间文件。

  • 由于可能会有一些 worker 速度慢,并未 crash 而只是超时,所以会出现一个任务由不同的 worker 先后完成,而向 coordinator 先后多次传递任务完成的信息。所以对于记录剩余未完成的任务的数量的变量,不能收到完成消息后简单减一。

  • 加了锁的函数要注意防止死锁。如 coordinator 的 GetJob 函数中,如果 channel 队列此时为空,会阻塞直到有下一个数进入队列,但若阻塞时互斥锁是 lock 的状态,下一个数进入队列的程序段也加上了锁,将会出现死锁。事实上 GetJob 函数无需加锁。

一个调试了挺久的问题

在快速解决了一些 bug 之后,最后一个问题是 reduce parallelism test 有概率失败,显示“too few parallel reduces”。

我看了一下 test-mr.sh 中的对应内容,也通过随机数给 worker 编号进行了查看,测试失败的原因是只有一个 worker 执行了所有 reduce 进程。

这是为什么呢,我研究了很久,尝试了很多方法都没有找到问题所在。后来我发现每次只有 reduce parallelism test 有可能会出问题,但是 map parallelism test 每次都能正常通过。这让我把问题范围缩小到 map 和 reduce 任务切换处,才终于发现了问题所在。

我的 GetJob 函数是这样写的:

func (c *Coordinator) GetJob(args *JobArgs, reply *JobReply) error {
    // fmt.Println("One worker is asking for job.")
    c.mutexLock.Lock()
    mapJobsNumLeft := c.mapJobsNumLeft
    reduceJobsNumLeft := c.reduceJobsNumLeft
    c.mutexLock.Unlock()
    if mapJobsNumLeft > 0 {
        reply.JobType = Map
        reply.MapArgs.WorkerId = <-c.mapQueue
        reply.MapArgs.File = c.files[reply.MapArgs.WorkerId]
        reply.MapArgs.NReduce = c.nReduce
        // fmt.Printf("Assigned Map Job No.%v\n", reply.MapArgs.WorkerId)
        go c.waitForWorker(Map, reply.MapArgs.WorkerId)
    } else if reduceJobsNumLeft > 0 {
        reply.JobType = Reduce
        reply.ReduceArgs.WorkerId = <-c.reduceQueue
        reply.ReduceArgs.IntermediateFileNames = c.intermediateFileNames[reply.ReduceArgs.WorkerId]
        // fmt.Printf("Assigned Reduce Job No.%v\n", reply.ReduceArgs.WorkerId)
        go c.waitForWorker(Reduce, reply.ReduceArgs.WorkerId)
    } else {
        reply.JobType = Exit
        // fmt.Println("No job left to assign.")
    }
    return nil
}

判断 worker 是请求 map 任务还是 reduce 任务是通过剩余未完成的 map 任务的数量来实现的。但考虑当 worker A,B 先后执行最后两个 map 任务 的情况,A 执行完 map 任务后继续请求下一个任务。当 A 加锁取出 c.mapJobsNumLeft 的值时,B 并没有完成任务,于是 A 取出的 c.mapJobsNumLeft 的值为1,会继续请求 map 任务。但此时 map 任务已经全部分配出去,c.mapQueue 是空的,A 将会阻塞在 “reply.MapArgs.WorkerId = <-c.mapQueue” 处,并且只要 B 顺利完成最后一个 map 任务,c.mapQueue 将会一直是空的,A 也就会一直阻塞在此处,不能继续执行后面的 reduce 任务了。

解决方案是不将 worker 阻塞在 channel 处,而是直接判断 channel 是否为空,如果为空就让 worker 等待一段时间再重新请求任务。这样就可以给整个 GetJob 函数加上锁。

通过全部测试的代码

测试结果如下(进行了20次测试):

test

rpc.go

package mr

//
// RPC definitions.
//
// remember to capitalize all names.
//

import (
	"os"
	"strconv"
)

// Add your RPC definitions here.

// the job type enum, Map and Reduce
type JobType int

const (
	Map JobType = iota
	Reduce
	Exit
	Wait
)

// worker ask for a job
type JobArgs struct{}

// the coordinator reply for the job
type JobReply struct {
	JobType    JobType
	MapArgs    MapWorkerArgs
	ReduceArgs ReduceWorkerArgs
}

type PassFileNamesArgs struct {
	IntermediateFileNames []string
}

type PassFileNamesReply struct{}

type CompleteJobArgs struct {
	TheJobType JobType
	JobId      int
}

type CompleteJobReply struct{}

// Cook up a unique-ish UNIX-domain socket name
// in /var/tmp, for the coordinator.
// Can't use the current directory since
// Athena AFS doesn't support UNIX-domain sockets.
func coordinatorSock() string {
	s := "/var/tmp/5840-mr-"
	s += strconv.Itoa(os.Getuid())
	return s
}

coordinator.go

package mr

import (
	"log"
	"net"
	"net/http"
	"net/rpc"
	"os"
	"sync"
	"time"
)

type Coordinator struct {
	files   []string
	nReduce int // number of reduce workers
	// the file names of the intermediate files
	// index i is for the No.i Reduce worker
	intermediateFileNames [][]string
	mapJobsNumLeft        int // number of map jobs left uncompleted
	reduceJobsNumLeft     int // number of reduce jobs left uncompleted
	mutexLock             sync.Mutex
	mapQueue              chan int // queue of map jobs
	reduceQueue           chan int // queue of reduce jobs
	// the status of the jobs
	// 0 : uncompleted
	// 1 : successfully completed
	mapJobsStatus    []int // status of map jobs
	reduceJobsStatus []int // status of reduce jobs
}

// the arguments to pass to the mapWorker
type MapWorkerArgs struct {
	File    string
	JobId   int // worker id
	NReduce int // number of reduce workers
}

// the arguments to pass to the reduceWorker
type ReduceWorkerArgs struct {
	JobId                 int      // worker id
	IntermediateFileNames []string // files for reduce workers to work on
}

// Your code here -- RPC handlers for the worker to call.

func (c *Coordinator) GetJob(args *JobArgs, reply *JobReply) error {
	// fmt.Println("One worker is asking for job.")
	c.mutexLock.Lock()
	defer c.mutexLock.Unlock()
	mapJobsNumLeft := c.mapJobsNumLeft
	reduceJobsNumLeft := c.reduceJobsNumLeft
	if mapJobsNumLeft > 0 {
		if len(c.mapQueue) == 0 {
			reply.JobType = Wait
			return nil
		}
		reply.JobType = Map
		reply.MapArgs.JobId = <-c.mapQueue
		reply.MapArgs.File = c.files[reply.MapArgs.JobId]
		reply.MapArgs.NReduce = c.nReduce
		// fmt.Printf("Assigned Map Job No.%v\n", reply.MapArgs.WorkerId)
		go c.waitForWorker(Map, reply.MapArgs.JobId)
	} else if reduceJobsNumLeft > 0 {
		if len(c.reduceQueue) == 0 {
			reply.JobType = Wait
			return nil
		}
		reply.JobType = Reduce
		reply.ReduceArgs.JobId = <-c.reduceQueue
		reply.ReduceArgs.IntermediateFileNames = c.intermediateFileNames[reply.ReduceArgs.JobId]
		// fmt.Printf("Assigned Reduce Job No.%v\n", reply.ReduceArgs.WorkerId)
		go c.waitForWorker(Reduce, reply.ReduceArgs.JobId)
	} else {
		reply.JobType = Exit
		// fmt.Println("No job left to assign.")
	}
	return nil
}

// worker calls this function to signal that the job has been completed
func (c *Coordinator) CompleteJob(args *CompleteJobArgs, reply *CompleteJobReply) error {
	c.mutexLock.Lock()
	defer c.mutexLock.Unlock()
	jobId := args.JobId
	switch args.TheJobType {
	case Map:
		if c.mapJobsStatus[jobId] == 0 {
			c.mapJobsNumLeft--
		}
		c.mapJobsStatus[jobId] = 1
		// fmt.Printf("Completed Map Job No.%v\n", workerId)
	case Reduce:
		if c.reduceJobsStatus[jobId] == 0 {
			c.reduceJobsNumLeft--
		}
		c.reduceJobsStatus[jobId] = 1
		// fmt.Printf("Completed Reduce Job No.%v\n", workerId)
	}
	return nil
}

// wait the worker for 10 seconds
// if the job is not completed after 10 seconds
// then assume the worker has already crashed
// put the job in the queue, to assign another worker to work on this job
func (c *Coordinator) waitForWorker(jobType JobType, workerId int) {
	time.Sleep(time.Second * 10)
	c.mutexLock.Lock()
	defer c.mutexLock.Unlock()
	switch jobType {
	case Map:
		if c.mapJobsStatus[workerId] != 1 {
			// fmt.Printf("Map job %v timeout\n", workerId)
			c.mapQueue <- workerId
		}
	case Reduce:
		if c.reduceJobsStatus[workerId] != 1 {
			// fmt.Printf("Reduce job %v timeout\n", workerId)
			c.reduceQueue <- workerId
		}
	}
}

func (c *Coordinator) PassFileNames(args *PassFileNamesArgs, reply *PassFileNamesReply) error {
	c.mutexLock.Lock()
	defer c.mutexLock.Unlock()
	intermediateFileNames := args.IntermediateFileNames
	for i, intermediateFileName := range intermediateFileNames {
		c.intermediateFileNames[i] = append(c.intermediateFileNames[i], intermediateFileName)
	}
	return nil
}

func (c *Coordinator) server() {
	rpc.Register(c)
	rpc.HandleHTTP()
	// l, e := net.Listen("tcp", ":1234")
	sockname := coordinatorSock()
	os.Remove(sockname)
	l, e := net.Listen("unix", sockname)
	if e != nil {
		log.Fatal("listen error:", e)
	}
	go http.Serve(l, nil)
}

// main/mrcoordinator.go calls Done() periodically to find out
// if the entire job has finished.
func (c *Coordinator) Done() bool {
	c.mutexLock.Lock()
	defer c.mutexLock.Unlock()
	if c.mapJobsNumLeft == 0 && c.reduceJobsNumLeft == 0 {
		return true
	}
	return false
}

// create a Coordinator.
// main/mrcoordinator.go calls this function.
// nReduce is the number of reduce tasks to use.
func MakeCoordinator(files []string, nReduce int) *Coordinator {
	c := Coordinator{}

	// Your code here.
	c.files = files
	c.nReduce = nReduce
	c.intermediateFileNames = make([][]string, nReduce)
	c.reduceJobsNumLeft = nReduce
	c.mapJobsNumLeft = len(files)

	c.mapQueue = make(chan int, len(files))
	c.reduceQueue = make(chan int, nReduce)
	// put all jobs in the queue
	for i := 0; i < len(files); i++ {
		c.mapQueue <- i
	}
	for i := 0; i < nReduce; i++ {
		c.reduceQueue <- i
	}

	c.mapJobsStatus = make([]int, len(files))
	c.reduceJobsStatus = make([]int, nReduce)

	// fmt.Println("----------------------------------------------------------------")
	// fmt.Printf("c.files num : %v\n", len(c.files))
	// fmt.Printf("c.nReduce = %d\n", c.nReduce)
	// fmt.Println("----------------------------------------------------------------")

	c.server()
	return &c
}

worker.go

package mr

import (
	"crypto/rand"
	"encoding/json"
	"fmt"
	"hash/fnv"
	"io"
	"log"
	"math/big"
	"net/rpc"
	"os"
	"plugin"
	"sort"
	"time"
)

// Map functions return a slice of KeyValue.
type KeyValue struct {
	Key   string
	Value string
}

// for sorting by key.
type ByKey []KeyValue

// for sorting by key.
func (a ByKey) Len() int           { return len(a) }
func (a ByKey) Swap(i, j int)      { a[i], a[j] = a[j], a[i] }
func (a ByKey) Less(i, j int) bool { return a[i].Key < a[j].Key }

// use ihash(key) % NReduce to choose the reduce
// task number for each KeyValue emitted by Map.
func ihash(key string) int {
	h := fnv.New32a()
	h.Write([]byte(key))
	return int(h.Sum32() & 0x7fffffff)
}

// load the application Map and Reduce functions
// from a plugin file, e.g. ../mrapps/wc.so
func loadPlugin(filename string) (func(string, string) []KeyValue, func(string, []string) string) {
	p, err := plugin.Open(filename)
	if err != nil {
		log.Fatalf("cannot load plugin %v", filename)
	}
	xmapf, err := p.Lookup("Map")
	if err != nil {
		log.Fatalf("cannot find Map in %v", filename)
	}
	mapf := xmapf.(func(string, string) []KeyValue)
	xreducef, err := p.Lookup("Reduce")
	if err != nil {
		log.Fatalf("cannot find Reduce in %v", filename)
	}
	reducef := xreducef.(func(string, []string) string)

	return mapf, reducef
}

func mapWorker(args MapWorkerArgs) {
	nReduce := args.NReduce
	file, err := os.Open(args.File)
	if err != nil {
		log.Fatalf("cannot open %v", args.File)
		return
	}
	content, err := io.ReadAll(file)
	if err != nil {
		log.Fatalf("cannot read %v", args.File)
		return
	}
	file.Close()
	mapf, _ := loadPlugin(os.Args[1])
	kva := mapf(args.File, string(content))
	// divide the key value pairs for each reduce workers
	kvalist := make([][]KeyValue, nReduce)
	intermediateFileNameList := make([]string, nReduce)
	for _, kv := range kva {
		num := ihash(kv.Key) % nReduce // the reduce task number for the KeyValue pair
		kvalist[num] = append(kvalist[num], kv)
	}
	// write the divided key value pairs to disk
	for i, kva := range kvalist {
		intermediateFileName := fmt.Sprintf("mr-%d-%d", args.JobId, i)
		intermediateFileNameList[i] = intermediateFileName
		intermediateFile, err := os.Create(intermediateFileName)
		if err != nil {
			log.Fatalf("cannot create %v", intermediateFileName)
		}
		enc := json.NewEncoder(intermediateFile)
		for _, kv := range kva {
			err := enc.Encode(&kv)
			if err != nil {
				log.Fatalf("cannot encode %v", kv)
				return
			}
		}
	}
	// pass the address (file name) of the key value pairs file to the master
	pargs := new(PassFileNamesArgs)
	preply := new(PassFileNamesReply)
	pargs.IntermediateFileNames = intermediateFileNameList
	ok := call("Coordinator.PassFileNames", &pargs, &preply)
	if !ok {
		fmt.Println("Call PassFileNames failed.")
		return
	}

	// send message to the coordinator that the map job has been completed
	cargs := new(CompleteJobArgs)
	cargs.TheJobType = Map
	cargs.JobId = args.JobId
	creply := new(CompleteJobReply)
	ok = call("Coordinator.CompleteJob", &cargs, &creply)
	if !ok {
		fmt.Println("Call CompleteJob failed.")
		return
	}
}

func reduceWorker(args ReduceWorkerArgs) {
	intermediateFileNames := args.IntermediateFileNames
	_, reducef := loadPlugin(os.Args[1])
	intermediate := make([]KeyValue, 0)
	// read key value pairs from intermediate files
	for _, fileName := range intermediateFileNames {
		intermediateFile, err := os.Open(fileName)
		if err != nil {
			// it is possible that map didn't generate this intermediate file
			// and it is nomal
			continue
		}
		dec := json.NewDecoder(intermediateFile)
		for {
			var kv KeyValue
			if err := dec.Decode(&kv); err != nil {
				break
			}
			intermediate = append(intermediate, kv)
		}
		intermediateFile.Close()
	}
	sort.Sort(ByKey(intermediate))
	// create output file
	oname := fmt.Sprintf("mr-out-%v", args.JobId)
	// create temporary file to avoide problems with parallel reduce workers writing to the same file
	ofile, _ := os.CreateTemp("./", "mr-out-*")
	// ofile, _ := os.Create(oname)
	//
	// call Reduce on each distinct key in intermediate[],
	// and print the result to ofile
	//
	i := 0
	for i < len(intermediate) {
		j := i + 1
		for j < len(intermediate) && intermediate[j].Key == intermediate[i].Key {
			j++
		}
		values := []string{}
		for k := i; k < j; k++ {
			values = append(values, intermediate[k].Value)
		}
		output := reducef(intermediate[i].Key, values)

		// this is the correct format for each line of Reduce output.
		fmt.Fprintf(ofile, "%v %v\n", intermediate[i].Key, output)

		i = j
	}
	ofile.Close()
	os.Rename(ofile.Name(), oname)

	// send message to the coordinator that this reduce job has been completed
	cargs := new(CompleteJobArgs)
	cargs.TheJobType = Reduce
	cargs.JobId = args.JobId
	creply := new(CompleteJobReply)
	ok := call("Coordinator.CompleteJob", &cargs, &creply)
	if !ok {
		fmt.Println("Call CompleteJob failed.")
		return
	}
}

// main/mrworker.go calls this function.
func Worker(mapf func(string, string) []KeyValue,
	reducef func(string, []string) string,
) {
	workerId, err := rand.Int(rand.Reader, big.NewInt(1000))
	if err != nil {
		log.Fatal(err)
	}
	fmt.Printf("Starting worker %v\n", workerId)
	for {
		args := new(JobArgs)
		reply := new(JobReply)
		ok := call("Coordinator.GetJob", &args, &reply)
		// sleep for a little while to avoid all jobs being asked by one worker
		// time.Sleep(time.Second)
		if !ok {
			// assume that the coordinator has exited because the job is done
			fmt.Println("Call GetJob failed.")
			return
		} else {
			switch reply.JobType {
			case Map:
				fmt.Printf("Running Map No.%d on worker %v\n", reply.MapArgs.JobId, workerId)
				mapWorker(reply.MapArgs)
			case Reduce:
				fmt.Printf("Running Reduce No.%d on worker %v\n", reply.ReduceArgs.JobId, workerId)
				reduceWorker(reply.ReduceArgs)
				// time.Sleep(time.Millisecond * 100)
			case Exit:
				fmt.Println("No job to run, worker exit.")
				return
			case Wait:
				time.Sleep(time.Millisecond * 50)
			}
		}
	}
}

// send an RPC request to the coordinator, wait for the response.
// usually returns true.
// returns false if something goes wrong.
func call(rpcname string, args interface{}, reply interface{}) bool {
	// c, err := rpc.DialHTTP("tcp", "127.0.0.1"+":1234")
	sockname := coordinatorSock()
	c, err := rpc.DialHTTP("unix", sockname)
	if err != nil {
		log.Fatal("dialing:", err)
	}
	defer c.Close()

	err = c.Call(rpcname, args, reply)
	if err == nil {
		return true
	}

	fmt.Println(err)
	return false
}
posted @ 2024-02-23 17:20  雪中的茶  阅读(140)  评论(0编辑  收藏  举报