pytorch01——pytorch并行计算
1|0并行计算
1|1在利用pytorch做深度学习的过程中,可能会遇到数据量较大,无法在单块GPU上完成,或者需要提升计算速度的场景,这时就需要用到并行计算。
1|21.为什么要做并行计算?
我们学习pytorch的目的是可以编写我们自己的框架,来完成特定地任务。可以说在深度学习时代,GPU的出现让我们可以训练的更快,更好。所以,如何充分利用GPU的性能来提高我们模型学习的效果,这就需要学习pytorch的并行计算。pytorch可以在编写完模型之后,让多个GPU来参与训练。
1|32.CUDA是个啥
CUDA
是我们使用GPU的提供商——NVIDIA提供的GPU并行计算框架。对于GPU本身的编程,使用的是CUDA
语言来实现的。但是,在我们使用PyTorch编写深度学习代码时,使用的CUDA
又是另一个意思。在PyTorch使用 CUDA
表示要开始要求我们的模型或者数据开始使用GPU了。
在编写程序中,当我们使用了 cuda()
时,其功能是让我们的模型或者数据迁移到GPU当中,通过GPU开始计算。
1|43.目前采用的并行计算方案
不同的数据分布到不同的设备中,执行相同的任务(Data parallelism)
它的逻辑是,我不再拆分模型,我训练的时候模型都是一整个模型。但是我将输入的数据拆分。所谓的拆分数据就是,同一个模型在不同GPU中训练一部分数据,然后再分别计算一部分数据之后,只需要将输出的数据做一个汇总,然后再反传。其架构如下:
这种方式可以解决之前模式遇到的通讯问题。
PS:现在的主流方式是数据并行的方式(Data parallelism)
__EOF__
本文链接:https://www.cnblogs.com/tccjx/articles/15985110.html
关于博主:评论和私信会在第一时间回复。或者直接私信我。
版权声明:本博客所有文章除特别声明外,均采用 BY-NC-SA 许可协议。转载请注明出处!
声援博主:如果您觉得文章对您有帮助,可以点击文章右下角【推荐】一下。您的鼓励是博主的最大动力!
本文来自博客园,作者:TCcjx,转载请注明原文链接:https://www.cnblogs.com/tccjx/articles/15985110.html
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· TypeScript + Deepseek 打造卜卦网站:技术与玄学的结合
· 阿里巴巴 QwQ-32B真的超越了 DeepSeek R-1吗?
· 如何调用 DeepSeek 的自然语言处理 API 接口并集成到在线客服系统
· 【译】Visual Studio 中新的强大生产力特性
· 2025年我用 Compose 写了一个 Todo App