A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties:
- The left subtree of a node contains only nodes with keys less than or equal to the node's key.
- The right subtree of a node contains only nodes with keys greater than the node's key.
- Both the left and right subtrees must also be binary search trees.
Insert a sequence of numbers into an initially empty binary search tree. Then you are supposed to count the total number of nodes in the lowest 2 levels of the resulting tree.
Input Specification:
Each input file contains one test case. For each case, the first line gives a positive integer N (≤1000) which is the size of the input sequence. Then given in the next line are the N integers in [−10001000] which are supposed to be inserted into an initially empty binary search tree.
Output Specification:
For each case, print in one line the numbers of nodes in the lowest 2 levels of the resulting tree in the format:
n1 + n2 = n
where n1
is the number of nodes in the lowest level, n2
is that of the level above, and n
is the sum.
Sample Input:
9
25 30 42 16 20 20 35 -5 28
Sample Output:
2 + 4 = 6
1 #include <stdio.h> 2 #include <algorithm> 3 #include <set> 4 #include <vector> 5 #include <queue> 6 using namespace std; 7 int height; 8 struct node{ 9 int data,h,lvl; 10 node* l,*r; 11 }; 12 node* newnode(int x){ 13 node* root = new node; 14 root->data=x; 15 root->l=NULL; 16 root->r=NULL; 17 root->h=1; 18 return root; 19 } 20 int geth(node* root){ 21 if(root==NULL) return 0; 22 return root->h; 23 } 24 void updateh(node* root){ 25 root->h = max(geth(root->l),geth(root->r))+1; 26 } 27 void insert(node* &root,int x){ 28 if(root==NULL) { 29 root=newnode(x); 30 return; 31 } 32 if(x>root->data){ 33 insert(root->r,x); 34 updateh(root); 35 } 36 else if(x<=root->data){ 37 insert(root->l,x); 38 updateh(root); 39 } 40 } 41 int main(){ 42 int n; 43 scanf("%d",&n); 44 node* root = NULL; 45 for(int i=0;i<n;i++){ 46 int x; 47 scanf("%d",&x); 48 insert(root,x); 49 } 50 height=root->h; 51 int n1=0,n2=0; 52 queue<node*> q; 53 root->lvl=1; 54 q.push(root); 55 while(!q.empty()){ 56 node* now=q.front(); 57 q.pop(); 58 //printf("%d %d\n",now->data,now->lvl); 59 if(now->l!=NULL){ 60 now->l->lvl=now->lvl+1; 61 q.push(now->l); 62 } 63 if(now->r!=NULL){ 64 now->r->lvl=now->lvl+1; 65 q.push(now->r); 66 } 67 if(now->lvl==height)n1++; 68 if(now->lvl==height-1)n2++; 69 } 70 printf("%d + %d = %d",n1,n2,n1+n2); 71 }
注意点:二叉搜索树的建立与层序遍历。不过好像做麻烦了,用dfs会更简洁。又好像dfs都不用,可以直接在插入时候加个lvl数组算