机器学习各种相似性度量及Python实现
转自:https://blog.csdn.net/u010412858/article/details/60467382
在做很多研究问题时常常需要估算不同样本之间的相似性度量(Similarity Measurement),这时通常采用的方法就是计算样本间的“距离”(Distance)。采用什么样的方法计算距离是很讲究,甚至关系到分类的正确与否。
1、欧式距离
# 1) given two data points, calculate the euclidean distance between them def get_distance(data1, data2): points = zip(data1, data2) diffs_squared_distance = [pow(a - b, 2) for (a, b) in points] return math.sqrt(sum(diffs_squared_distance))
2、余弦相似度
def cosin_distance(vector1, vector2): dot_product = 0.0 normA = 0.0 normB = 0.0 for a, b in zip(vector1, vector2): dot_product += a * b normA += a ** 2 normB += b ** 2 if normA == 0.0 or normB == 0.0: return None else: return dot_product / ((normA * normB) ** 0.5)
3、用Numpy进行余弦相似度计算
sim = user_item_matric.dot(user_item_matric.T) norms = np.array([np.sqrt(np.diagonal(sim))]) user_similarity=(sim / norms / norms.T)
4、用scikit cosine_similarity计算相似度
from sklearn.metrics.pairwise import cosine_similarity user_similarity=cosine_similarity(user_tag_matric)
5、用scikit pairwise_distances计算相似度
from sklearn.metrics.pairwise import pairwise_distances user_similarity = pairwise_distances(user_tag_matric, metric='cosine')
需要注意的一点是,用pairwise_distances计算的Cosine distance是1-(cosine similarity)结果
6. 曼哈顿距离
def Manhattan(vec1, vec2): npvec1, npvec2 = np.array(vec1), np.array(vec2) return np.abs(npvec1-npvec2).sum() # Manhattan_Distance,
7. 切比雪夫距离
def Chebyshev(vec1, vec2): npvec1, npvec2 = np.array(vec1), np.array(vec2) return max(np.abs(npvec1-npvec2)) # Chebyshev_Distance
8. 闵可夫斯基距离
#!/usr/bin/env python from math import* from decimal import Decimal def nth_root(value,n_root): root_value=1/float(n_root) return round(Decimal(value)**Decimal(root_value),3) def minkowski_distance(x,y,p_value): return nth_root(sum(pow(abs(a-b),p_value) for a,b in zip(x,y)),p_value) print(minkowski_distance([0,3,4,5],[7,6,3,-1],3))
9. 标准化欧氏距离
def Standardized_Euclidean(vec1,vec2,v): from scipy import spatial npvec = np.array([np.array(vec1), np.array(vec2)]) return spatial.distance.pdist(npvec, 'seuclidean', V=None) # Standardized Euclidean distance # http://blog.csdn.net/jinzhichaoshuiping/article/details/51019473
10. 马氏距离
def Mahalanobis(vec1, vec2): npvec1, npvec2 = np.array(vec1), np.array(vec2) npvec = np.array([npvec1, npvec2]) sub = npvec.T[0]-npvec.T[1] inv_sub = np.linalg.inv(np.cov(npvec1, npvec2)) return math.sqrt(np.dot(inv_sub, sub).dot(sub.T)) # MahalanobisDistance
11. 编辑距离
def Edit_distance_str(str1, str2): import Levenshtein edit_distance_distance = Levenshtein.distance(str1, str2) similarity = 1-(edit_distance_distance/max(len(str1), len(str2))) return {'Distance': edit_distance_distance, 'Similarity': similarity} # Levenshtein distance
http://bigdata-madesimple.com/implementing-the-five-most-popular-similarity-measures-in-python/