线程的互斥锁、递归锁及信号量
线程
线程指的是一条流水线的工作过程
一个进程内自带一个线程,线程才是执行单位。注意:进程根本就不是一个执行单位,进程其实是一个资源单位。
主进程就是主线程
进程和线程的区别:
1、同一进程内的线程们共享该进程内资源,不同进程内的线程资源肯定是隔离的。
2、创建线程的开销比创建进程要小的多
进程间数据是独立的,可以借助于队列或管道实现通信,二者都是基于消息传递的 虽然进程间数据独立,但可以通过Manager实现数据共享,事实上Manager的功能远不止于此 A manager object returned by Manager() controls a server process which holds Python objects and allows other processes to manipulate them using proxies. A manager returned by Manager() will support types list, dict, Namespace, Lock, RLock, Semaphore, BoundedSemaphore, Condition, Event, Barrier, Queue, Value and Array. For example,
为何要用多线程
多线程指的是,在一个进程中开启多个线程,简单的讲:如果多个任务共用一块地址空间,那么必须在一个进程内开启多个线程。详细的讲分为4点:
1. 多线程共享一个进程的地址空间
2. 线程比进程更轻量级,线程比进程更容易创建可撤销,在许多操作系统中,创建一个线程比创建一个进程要快10-100倍,在有大量线程需要动态和快速修改时,这一特性很有用
3. 若多个线程都是cpu密集型的,那么并不能获得性能上的增强,但是如果存在大量的计算和大量的I/O处理,拥有多个线程允许这些活动彼此重叠运行,从而会加快程序执行的速度。
4. 在多cpu系统中,为了最大限度的利用多核,可以开启多个线程,比开进程开销要小的多。(这一条并不适用于python)
多线程的应用举例
开启一个字处理软件进程,该进程肯定需要办不止一件事情,比如监听键盘输入,处理文字,定时自动将文字保存到硬盘,这三个任务操作的都是同一块数据,因而不能用多进程。只能在一个进程里并发地开启三个线程,如果是单线程,那就只能是,键盘输入时,不能处理文字和自动保存,自动保存时又不能输入和处理文字。
线程的实际应用
hreading模块介绍
multiprocess模块的完全模仿了threading模块的接口,二者在使用层面,有很大的相似性,因而不再详细介绍
官网链接:https://docs.python.org/3/library/threading.html?highlight=threading#
开启线程的两种方式
#方式一 from threading import Thread import time def sayhi(name): time.sleep(2) print('%s say hello' %name) if __name__ == '__main__': t=Thread(target=sayhi,args=('egon',)) t.start() print('主线程')
#方式二 from threading import Thread import time class Sayhi(Thread): def __init__(self,name): super().__init__() self.name=name def run(self): time.sleep(2) print('%s say hello' % self.name) if __name__ == '__main__': t = Sayhi('egon') t.start() print('主线程')
在一个进程下开启多个线程与在一个进程下开启多个子进程的区别
from threading import Thread from multiprocessing import Process import os def work(): print('hello') if __name__ == '__main__': #在主进程下开启线程 t=Thread(target=work) t.start() print('主线程/主进程') ''' 打印结果: hello 主线程/主进程 ''' #在主进程下开启子进程 t=Process(target=work) t.start() print('主线程/主进程') ''' 打印结果: 主线程/主进程 hello ''' 谁的开启速度快
from threading import Thread from multiprocessing import Process import os def work(): print('hello',os.getpid()) if __name__ == '__main__': #part1:在主进程下开启多个线程,每个线程都跟主进程的pid一样 t1=Thread(target=work) t2=Thread(target=work) t1.start() t2.start() print('主线程/主进程pid',os.getpid()) #part2:开多个进程,每个进程都有不同的pid p1=Process(target=work) p2=Process(target=work) p1.start() p2.start() print('主线程/主进程pid',os.getpid()) 瞅一瞅pid
from threading import Thread from multiprocessing import Process import os def work(): global n n=0 if __name__ == '__main__': # n=100 # p=Process(target=work) # p.start() # p.join() # print('主',n) #毫无疑问子进程p已经将自己的全局的n改成了0,但改的仅仅是它自己的,查看父进程的n仍然为100 n=1 t=Thread(target=work) t.start() t.join() print('主',n) #查看结果为0,因为同一进程内的线程之间共享进程内的数据 同一进程内的线程共享该进程的数据?
练习
练习一:
#_*_coding:utf-8_*_ #!/usr/bin/env python import multiprocessing import threading import socket s=socket.socket(socket.AF_INET,socket.SOCK_STREAM) s.bind(('127.0.0.1',8080)) s.listen(5) def action(conn): while True: data=conn.recv(1024) print(data) conn.send(data.upper()) if __name__ == '__main__': while True: conn,addr=s.accept() p=threading.Thread(target=action,args=(conn,)) p.start() 多线程并发的socket服务端
#_*_coding:utf-8_*_ #!/usr/bin/env python import socket s=socket.socket(socket.AF_INET,socket.SOCK_STREAM) s.connect(('127.0.0.1',8080)) while True: msg=input('>>: ').strip() if not msg:continue s.send(msg.encode('utf-8')) data=s.recv(1024) print(data) 客户端
练习二:三个任务,一个接收用户输入,一个将用户输入的内容格式化成大写,一个将格式化后的结果存入文件
from threading import Thread msg_l=[] format_l=[] def talk(): while True: msg=input('>>: ').strip() if not msg:continue msg_l.append(msg) def format_msg(): while True: if msg_l: res=msg_l.pop() format_l.append(res.upper()) def save(): while True: if format_l: with open('db.txt','a',encoding='utf-8') as f: res=format_l.pop() f.write('%s\n' %res) if __name__ == '__main__': t1=Thread(target=talk) t2=Thread(target=format_msg) t3=Thread(target=save) t1.start() t2.start() t3.start()
线程相关的其他方法
Thread实例对象的方法 # isAlive(): 返回线程是否活动的。 # getName(): 返回线程名。 # setName(): 设置线程名。 threading模块提供的一些方法: # threading.currentThread(): 返回当前的线程变量。 # threading.enumerate(): 返回一个包含正在运行的线程的list。正在运行指线程启动后、结束前,不包括启动前和终止后的线程。 # threading.activeCount(): 返回正在运行的线程数量,与len(threading.enumerate())有相同的结果。
from threading import Thread import threading from multiprocessing import Process import os def work(): import time time.sleep(3) print(threading.current_thread().getName()) if __name__ == '__main__': #在主进程下开启线程 t=Thread(target=work) t.start() print(threading.current_thread().getName()) print(threading.current_thread()) #主线程 print(threading.enumerate()) #连同主线程在内有两个运行的线程 print(threading.active_count()) print('主线程/主进程') ''' 打印结果: MainThread <_MainThread(MainThread, started 140735268892672)> [<_MainThread(MainThread, started 140735268892672)>, <Thread(Thread-1, started 123145307557888)>] 主线程/主进程 Thread-1 '''
主线程等待子线程结束
from threading import Thread import time def sayhi(name): time.sleep(2) print('%s say hello' %name) if __name__ == '__main__': t=Thread(target=sayhi,args=('egon',)) t.start() t.join() print('主线程') print(t.is_alive()) ''' egon say hello 主线程 False '''
守护线程
无论是进程还是线程,都遵循:守护xxx会等待主xxx运行完毕后被销毁
需要强调的是:运行完毕并非终止运行
#1.对主进程来说,运行完毕指的是主进程代码运行完毕 #2.对主线程来说,运行完毕指的是主线程所在的进程内所有非守护线程统统运行完毕,主线程才算运行完毕
详细解释:
#1 主进程在其代码结束后就已经算运行完毕了(守护进程在此时就被回收),然后主进程会一直等非守护的子进程都运行完毕后回收子进程的资源(否则会产生僵尸进程),才会结束, #2 主线程在其他非守护线程运行完毕后才算运行完毕(守护线程在此时就被回收)。因为主线程的结束意味着进程的结束,进程整体的资源都将被回收,而进程必须保证非守护线程都运行完毕后才能结束。
from threading import Thread import time def sayhi(name): time.sleep(2) print('%s say hello' %name) if __name__ == '__main__': t=Thread(target=sayhi,args=('egon',)) t.setDaemon(True) #必须在t.start()之前设置 t.start() print('主线程') print(t.is_alive()) ''' 主线程 True '''
Python GIL(Global Interpreter Lock)
链接:http://www.cnblogs.com/linhaifeng/articles/7449853.html
死锁现象与递归锁
进程也有死锁与递归锁,在进程那里忘记说了,放到这里一切说了额
所谓死锁: 是指两个或两个以上的进程或线程在执行过程中,因争夺资源而造成的一种互相等待的现象,若无外力作用,它们都将无法推进下去。此时称系统处于死锁状态或系统产生了死锁,这些永远在互相等待的进程称为死锁进程,如下就是死锁
from threading import Thread,Lock import time mutexA=Lock() mutexB=Lock() class MyThread(Thread): def run(self): self.func1() self.func2() def func1(self): mutexA.acquire() print('\033[41m%s 拿到A锁\033[0m' %self.name) mutexB.acquire() print('\033[42m%s 拿到B锁\033[0m' %self.name) mutexB.release() mutexA.release() def func2(self): mutexB.acquire() print('\033[43m%s 拿到B锁\033[0m' %self.name) time.sleep(2) mutexA.acquire() print('\033[44m%s 拿到A锁\033[0m' %self.name) mutexA.release() mutexB.release() if __name__ == '__main__': for i in range(10): t=MyThread() t.start() ''' Thread-1 拿到A锁 Thread-1 拿到B锁 Thread-1 拿到B锁 Thread-2 拿到A锁 然后就卡住,死锁了 '''
解决方法,递归锁,在Python中为了支持在同一线程中多次请求同一资源,python提供了可重入锁RLock。
这个RLock内部维护着一个Lock和一个counter变量,counter记录了acquire的次数,从而使得资源可以被多次require。直到一个线程所有的acquire都被release,其他的线程才能获得资源。上面的例子如果使用RLock代替Lock,则不会发生死锁:
mutexA=mutexB=threading.RLock() #一个线程拿到锁,counter加1,该线程内又碰到加锁的情况,则counter继续加1,这期间所有其他线程都只能等待,等待该线程释放所有锁,即counter递减到0为止
信号量Semaphore
同进程的一样
Semaphore管理一个内置的计数器,
每当调用acquire()时内置计数器-1;
调用release() 时内置计数器+1;
计数器不能小于0;当计数器为0时,acquire()将阻塞线程直到其他线程调用release()。
实例:(同时只有5个线程可以获得semaphore,即可以限制最大连接数为5):
from threading import Thread,Semaphore import threading import time # def func(): # if sm.acquire(): # print (threading.currentThread().getName() + ' get semaphore') # time.sleep(2) # sm.release() def func(): sm.acquire() print('%s get sm' %threading.current_thread().getName()) time.sleep(3) sm.release() if __name__ == '__main__': sm=Semaphore(5) for i in range(23): t=Thread(target=func) t.start()
与进程池是完全不同的概念,进程池Pool(4),最大只能产生4个进程,而且从头到尾都只是这四个进程,不会产生新的,而信号量是产生一堆线程/进程
互斥锁与信号量推荐博客:http://url.cn/5DMsS9r