[labuladong算法小抄]二分查找详解
本文转自labuladong的算法小抄 , 代码部分我使用go重新描述
先给大家讲个笑话乐呵一下:
有一天阿东到图书馆借了 N 本书,出图书馆的时候,警报响了,于是保安把阿东拦下,要检查一下哪本书没有登记出借。阿东正准备把每一本书在报警器下过一下,以找出引发警报的书,但是保安露出不屑的眼神:你连二分查找都不会吗?于是保安把书分成两堆,让第一堆过一下报警器,报警器响;于是再把这堆书分成两堆…… 最终,检测了 logN 次之后,保安成功的找到了那本引起警报的书,露出了得意和嘲讽的笑容。于是阿东背着剩下的书走了。
从此,图书馆丢了 N - 1 本书。
二分查找并不简单,Knuth 大佬(发明 KMP 算法的那位)都说二分查找:思路很简单,细节是魔鬼。很多人喜欢拿整型溢出的 bug 说事儿,但是二分查找真正的坑根本就不是那个细节问题,而是在于到底要给 mid
加一还是减一,while 里到底用 <=
还是 <
。
你要是没有正确理解这些细节,写二分肯定就是玄学编程,有没有 bug 只能靠菩萨保佑。我特意写了一首诗来歌颂该算法,概括本文的主要内容,建议保存:
本文就来探究几个最常用的二分查找场景:寻找一个数、寻找左侧边界、寻找右侧边界。而且,我们就是要深入细节,比如不等号是否应该带等号,mid 是否应该加一等等。分析这些细节的差异以及出现这些差异的原因,保证你能灵活准确地写出正确的二分查找算法。
零、二分查找框架
func binarySearch(nums []int, target int)int { left := 0, right := ... for ... { mid := left + (right - left) / 2; if (nums[mid] == target) { ... } else if nums[mid] < target { left = ... } else if nums[mid] > target { right = ... } } return ... }
分析二分查找的一个技巧是:不要出现 else,而是把所有情况用 else if 写清楚,这样可以清楚地展现所有细节。本文都会使用 else if,旨在讲清楚,读者理解后可自行简化。
其中 ...
标记的部分,就是可能出现细节问题的地方,当你见到一个二分查找的代码时,首先注意这几个地方。后文用实例分析这些地方能有什么样的变化。
另外声明一下,计算 mid 时需要防止溢出,代码中 left + (right - left) / 2
就和 (left + right) / 2
的结果相同,但是有效防止了 left
和 right
太大直接相加导致溢出。
一、寻找一个数(基本的二分搜索)
这个场景是最简单的,可能也是大家最熟悉的,即搜索一个数,如果存在,返回其索引,否则返回 -1。
func binarySearch(nums []int, target int) int { left := 0 right := len(nums) - 1 //注意 for left <= right { //注意 mid := left + (right-left)/2 if nums[mid] == target { return mid } else if nums[mid] < target { left = mid + 1 //注意 } else if nums[mid] > target { right = mid - 1 //注意 } } return -1 }
1、为什么 for循环的条件中是 <=,而不是 <?
答:因为初始化 right
的赋值是 nums.length - 1
,即最后一个元素的索引,而不是 nums.length
。
这二者可能出现在不同功能的二分查找中,区别是:前者相当于两端都闭区间 [left, right]
,后者相当于左闭右开区间 [left, right)
,因为索引大小为 nums.length
是越界的。
我们这个算法中使用的是前者 [left, right]
两端都闭的区间。这个区间其实就是每次进行搜索的区间。
什么时候应该停止搜索呢?当然,找到了目标值的时候可以终止:
if nums[mid] == target { return mid }
但如果没找到,就需要 for 循环终止,然后返回 -1。那 for 循环什么时候应该终止?搜索区间为空的时候应该终止,意味着你没得找了,就等于没找到嘛。
for left <= right
的终止条件是 left == right + 1
,写成区间的形式就是 [right + 1, right]
,或者带个具体的数字进去 [3, 2]
,可见这时候区间为空,因为没有数字既大于等于 3 又小于等于 2 的吧。所以这时候 for 循环终止是正确的,直接返回 -1 即可。
for left < right
的终止条件是 left == right
,写成区间的形式就是 [right, right]
,或者带个具体的数字进去 [2, 2]
,这时候区间非空,还有一个数 2,但此时 for 循环终止了。也就是说这区间 [2, 2]
被漏掉了,索引 2 没有被搜索,如果这时候直接返回 -1 就是错误的。
当然,如果你非要用 for left < right
也可以,我们已经知道了出错的原因,就打个补丁好了:
//... for left < right { // ... } return nums[left] == target ? left : -1
2、为什么 left = mid + 1
,right = mid - 1
?我看有的代码是 right = mid
或者 left = mid
,没有这些加加减减,到底怎么回事,怎么判断?
答:这也是二分查找的一个难点,不过只要你能理解前面的内容,就能够很容易判断。
刚才明确了「搜索区间」这个概念,而且本算法的搜索区间是两端都闭的,即 [left, right]
。那么当我们发现索引 mid
不是要找的 target
时,下一步应该去搜索哪里呢?
当然是去搜索 [left, mid-1]
或者 [mid+1, right]
对不对?因为 mid
已经搜索过,应该从搜索区间中去除。
3、此算法有什么缺陷?
答:至此,你应该已经掌握了该算法的所有细节,以及这样处理的原因。但是,这个算法存在局限性。
比如说给你有序数组 nums = [1,2,2,2,3]
,target
为 2,此算法返回的索引是 2,没错。但是如果我想得到 target
的左侧边界,即索引 1,或者我想得到 target
的右侧边界,即索引 3,这样的话此算法是无法处理的。
这样的需求很常见,你也许会说,找到一个 target,然后向左或向右线性搜索不行吗?可以,但是不好,因为这样难以保证二分查找对数级的复杂度了。
我们后续的算法就来讨论这两种二分查找的算法。
二、寻找左侧边界的二分搜索
以下是最常见的代码形式,其中的标记是需要注意的细节:
func LeftBound(nums []int, target int) int { if len(nums) == 0 { return -1 } left := 0 right := len(nums) //注意 for left < right { //注意 mid := left + (right-left)/2 if nums[mid] == target { right = mid } else if nums[mid] < target { left = mid + 1 } else if nums[mid] > target { right = mid //注意 } } return left }
1、为什么 for 中是 <
而不是 <=
?
答:用相同的方法分析,因为 right = len(nums)
而不是 len(nums) - 1
。因此每次循环的「搜索区间」是 [left, right)
左闭右开。
for left < right
终止的条件是 left == right
,此时搜索区间 [left, left)
为空,所以可以正确终止。
PS:这里先要说一个搜索左右边界和上面这个算法的一个区别,也是很多读者问的:刚才的 right
不是 len(nums) - 1
吗,为啥这里非要写成 len(nums)
使得「搜索区间」变成左闭右开呢?
因为对于搜索左右侧边界的二分查找,这种写法比较普遍,我就拿这种写法举例了,保证你以后遇到这类代码可以理解。你非要用两端都闭的写法反而更简单,我会在后面写相关的代码,把三种二分搜索都用一种两端都闭的写法统一起来,你耐心往后看就行了。
2、为什么没有返回 -1 的操作?如果 nums
中不存在 target
这个值,怎么办?
答:因为要一步一步来,先理解一下这个「左侧边界」有什么特殊含义:
对于这个数组,算法会返回 1。这个 1 的含义可以这样解读:nums 中小于 2 的元素有 1 个。
比如对于有序数组 nums = [2,3,5,7], target = 1,算法会返回 0,含义是:nums 中小于 1 的元素有 0 个。
再比如说 nums = [2,3,5,7], target = 8,算法会返回 4,含义是:nums 中小于 8 的元素有 4 个。
综上可以看出,函数的返回值(即 left 变量的值)取值区间是闭区间 [0, nums.length],所以我们简单添加两行代码就能在正确的时候 return -1:
if left == len(nums) || nums[left] != target { return -1 } return left
3、为什么 left = mid + 1,right = mid ?和之前的算法不一样?
答:这个很好解释,因为我们的「搜索区间」是 [left, right) 左闭右开,所以当 nums[mid] 被检测之后,下一步的搜索区间应该去掉 mid 分割成两个区间,即 [left, mid) 或 [mid + 1, right)。
4、为什么该算法能够搜索左侧边界?
答:关键在于对于 nums[mid] == target 这种情况的处理:
if nums[mid] == target { right = mid }
可见,找到 target 时不要立即返回,而是缩小「搜索区间」的上界 right,在区间 [left, mid) 中继续搜索,即不断向左收缩,达到锁定左侧边界的目的。
5、为什么返回 left 而不是 right?
答:都是一样的,因为 for终止的条件是 left == right。
6、能不能想办法把 right 变成 len(nums) - 1,也就是继续使用两边都闭的「搜索区间」?这样就可以和第一种二分搜索在某种程度上统一起来了。
答:当然可以,只要你明白了「搜索区间」这个概念,就能有效避免漏掉元素,随便你怎么改都行。下面我们严格根据逻辑来修改:
因为你非要让搜索区间两端都闭,所以 right 应该初始化为 len(nums) - 1,for 的终止条件应该是 left == right + 1,也就是其中应该用 <=:
func LeftBound2(nums []int, target int) int { left := 0 right := len(nums) - 1 //注意 for left <= right { //注意 mid := left + (right-left)/2 //if else } return -1 }
因为搜索区间是两端都闭的,且现在是搜索左侧边界,所以 left
和 right
的更新逻辑如下:
if nums[mid] == target { //收缩右侧边界 right = mid - 1 } else if nums[mid] < target { //搜索区间变为 [mid+1, right] left = mid + 1 //注意 } else if nums[mid] > target { //搜索区间变为 [left, mid-1] right = mid - 1 }
由于 for的退出条件是 left == right + 1
,所以当 target
比 nums
中所有元素都大时,会存在以下情况使得索引越界:
if left >= len(nums) || nums[left] != target { return -1 }
至此,整个算法就写完了,完整代码如下:
func LeftBound2(nums []int, target int) int { left := 0 right := len(nums) - 1 //注意 for left <= right { //注意 mid := left + (right-left)/2 if nums[mid] == target { //收缩右侧边界 right = mid - 1 } else if nums[mid] < target { //搜索区间变为 [mid+1, right] left = mid + 1 //注意 } else if nums[mid] > target { //搜索区间变为 [left, mid-1] right = mid - 1 } } if left >= len(nums) || nums[left] != target { return -1 } return left }
这样就和第一种二分搜索算法统一了,都是两端都闭的「搜索区间」,而且最后返回的也是 left
变量的值。只要把住二分搜索的逻辑,两种形式大家看自己喜欢哪种记哪种吧。
三、寻找右侧边界的二分查找
类似寻找左侧边界的算法,这里也会提供两种写法,还是先写常见的左闭右开的写法,只有两处和搜索左侧边界不同,已标注:
func RightBound(nums []int, target int) int { left := 0 right := len(nums) - 1 //注意 for left <= right { //注意 mid := left + (right-left)/2 if nums[mid] == target { //收缩左侧边界 left = mid + 1 } else if nums[mid] < target { //搜索区间变为 [mid+1, right] left = mid + 1 //注意 } else if nums[mid] > target { //搜索区间变为 [left, mid-1] right = mid - 1 } }
if right < 0 || nums[right] != target {
return -1
}
return right
return right }
1、为什么这个算法能够找到右侧边界?
答:类似地,关键点还是这里:
if nums[mid] == target { //收缩左侧边界 left = mid + 1 }
当 nums[mid] == target
时,不要立即返回,而是增大「搜索区间」的下界 left
,使得区间不断向右收缩,达到锁定右侧边界的目的。
当 target
比所有元素都小时,right
会被减到 -1,所以需要在最后防止越界: