03 2025 档案
摘要:导读 沃太能源是国内领先储能设备生产厂商,数十万储能终端遍布世界各地。此前使用 MongoDB 存储时序数据,但随着设备测点增加,MongoDB 在存储效率、写入性能、查询性能等方面暴露出短板。经过对比,沃太能源选择了专业时序数据库 TDengine,生产效能显著提升:整体上,数据压缩率超 10 倍
阅读全文
摘要:在智能医疗与脑科学快速发展的今天,高效的数据处理能力已成为突破创新的关键。安提思专注于睡眠监测与神经调控,基于人工智能和边缘计算,实现从生理体征监测、智能干预到效果评估的闭环。面对海量生理数据的存储与实时计算需求,安提思选择 TDengine 云服务作为核心时序数据库,借助其高效的数据压缩能力和毫秒
阅读全文
摘要:亮点总结: TSBS 测试表明,对于少于 100 万台设备的数据集,InfluxDB OSS 3.0 的数据写入速度实际上比 InfluxDB OSS 1.8 更慢。 对于 100 万台及以上设备的数据集,InfluxDB OSS 3.0 的数据写入性能才开始超过 InfluxDB OSS 1.8。
阅读全文
摘要:靖江特殊钢有限公司(简称“靖江特钢”)在炼钢生产过程中,每天产生数亿条海量时序数据。随着数据规模的增长,传统数据库逐渐暴露出存储效率低、查询速度慢、数据处理成本高等问题,影响了生产效率和决策的及时性。为解决这一挑战,靖江特钢在本次项目中引入 TDengine,构建高效的数据管理体系,支撑炼钢生产各环
阅读全文
摘要:在当今大数据时代,时序数据库的应用越来越广泛,尤其是在物联网、工业监控、金融分析等领域。TDengine 作为一款高性能的时序数据库,凭借独特的存储架构和高效的压缩算法,在存储和查询效率上表现出色。然而,随着数据规模的不断增长,在保证数据安全性和存储效率的同时,如何优化 CPU 的资源占用,成为了一
阅读全文
摘要:小T导读:本篇文章来自“2024,我想和 TDengine 谈谈”征文活动的优秀投稿,深入探讨了如何在消防行业中运用 TDengine 进行业务建模。文章重点介绍了如何通过 TDengine 的超级表、标签设计和高效查询功能,有效管理消防监控系统中的时序数据。作者详细阐述了实时监控、报警系统以及历史
阅读全文