MySQL高可用架构之分库分表——ShardingJDBC的使用

1. 准备工作

   项目文件链接如下。

  链接:https://pan.baidu.com/s/1_qkkCEBvYPCmagFD9Y8-nA
  提取码:kbtg

  创建两个字符集相同的数据库,再在每个数据库中创建两个数据结构相同的表结构。这里我创建的数据库为shardingjdbc_1,shardingjdbc_2,表为student_1,student_2。

CREATE TABLE `student_1` (
  `id` bigint NOT NULL,
  `name` varchar(64) DEFAULT NULL COMMENT '姓名',
  `sex` char(1) DEFAULT NULL COMMENT '性别',
  `age` int DEFAULT NULL COMMENT '年龄',
  `address` varchar(255) DEFAULT NULL COMMENT '地址',
  PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb3;

  创建一个springBoot项目,导入如下依赖。

      <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-jdbc</artifactId>
            <version>2.6.7</version>
        </dependency>
        <dependency>
            <groupId>mysql</groupId>
            <artifactId>mysql-connector-java</artifactId>
            <version>8.0.28</version>
        </dependency>
        <dependency>
            <groupId>com.alibaba</groupId>
            <artifactId>druid</artifactId>
            <version>1.2.9</version>
        </dependency>
        <dependency>
            <groupId>com.baomidou</groupId>
            <artifactId>mybatis-plus-boot-starter</artifactId>
            <version>3.5.1</version>
        </dependency>
        <dependency>
            <groupId>org.apache.shardingsphere</groupId>
            <artifactId>sharding-jdbc-spring-boot-starter</artifactId>
            <version>4.1.1</version>
        </dependency>  
View Code

2. ShardingJDBC分库分表实战

2.1 inline分片算法的使用

  使用场景:SQL 语句中有>,>=, <=,<,=,IN 和 BETWEEN AND 操作符,都可以应用此分片策略。标准分片策略(StandardShardingStrategy),它只支持对单个分片健(字段)为依据的分库分表,并提供了两种分片算法 PreciseShardingAlgorithm(精准分片)和 RangeShardingAlgorithm(范围分片)。在使用标准分片策略时,精准分片算法是必须实现的算法,用于 SQL 含有 = 和 IN 的分片处理;范围分片算法是非必选的,用于处理含有 BETWEEN AND 的分片处理。 inline策略为最基本,也为最常见,最简单的分片策略,使用的yml配置文件如下。

spring:
  shardingsphere:
    datasource:
      names: m1
      m1:
        type: com.alibaba.druid.pool.DruidDataSource
        driver-class-name: com.mysql.cj.jdbc.Driver
        url: jdbc:mysql://rm-bp1347i6zmc5iozp59o.mysql.rds.aliyuncs.com:3306/shardingjdbc_1?characterEncoding=utf8&characterSetResults=utf8&autoReconnect=true&failOverReadOnly=false&useSSL=false&serverTimezone=GMT%2B8
        username: root
        password: txb@root
    sharding:
      tables:
        student:
          actualDataNodes: m1.student_$->{1..2} #该写法说明表从student_1到student_2
          keyGenerator:
            column: id # 分表所根据的表列名
            type: SNOWFLAKE # 此处采用雪花算法
          tableStrategy:
            inline:
              shardingColumn: id
              algorithmExpression: student_$->{id % 2 + 1} #分片算法为根据id除以2取模,偶数存入student_1,奇数存入student_2
    props:
      sql:
        show: true

   新建实体类与mapper后在测试类中测试新增数据是否成功,代码如下。

    @Test
    public void addStudent(){
        for (int i = 0; i < 10; i++) {
            Student student = new Student();
            student.setName("檀潇斌" + i);
            student.setAge(18);
            student.setSex("1");
            student.setAddress("安徽省");
            studentMapper.insert(student);
        }
    }

从执行结果来看,偶数存入student_1,奇数存入student_2

 以上为分表策略,接下来看如何配置多个库,配置文件如下。

spring:
  shardingsphere:
    datasource:
      names: m1,m2
      m1:
        type: com.alibaba.druid.pool.DruidDataSource
        driver-class-name: com.mysql.cj.jdbc.Driver
        url: jdbc:mysql://rm-bp1347i6zmc5iozp59o.mysql.rds.aliyuncs.com:3306/shardingjdbc_1?characterEncoding=utf8&characterSetResults=utf8&autoReconnect=true&failOverReadOnly=false&useSSL=false&serverTimezone=GMT%2B8
        username: root
        password: txb@root
      m2:
        type: com.alibaba.druid.pool.DruidDataSource
        driver-class-name: com.mysql.cj.jdbc.Driver
        url: jdbc:mysql://rm-bp1347i6zmc5iozp59o.mysql.rds.aliyuncs.com:3306/shardingjdbc_2?characterEncoding=utf8&characterSetResults=utf8&autoReconnect=true&failOverReadOnly=false&useSSL=false&serverTimezone=GMT%2B8
        username: root
        password: txb@root
    sharding:
      tables:
        student:
          actualDataNodes: m$->{1..2}.student_$->{1..2}
          keyGenerator:
            column: id
            type: SNOWFLAKE
            props:
              worker:
                id: 1
          # 分库算法
          databaseStrategy:
            inline:
              shardingColumn: id
              algorithmExpression: m$->{id % 2 + 1}
          # 分表算法
          tableStrategy:
            inline:
              shardingColumn: id
              algorithmExpression: student_$->{((id + 1) % 4).intdiv(2)}
    # 打印sql语句
    props:
      sql:
        show: true

 2.2 standard分片算法的使用

  当我们 SQL中的分片健字段用到 BETWEEN AND操作符会使用到此算法,会根据 SQL中给出的分片健值范围值处理分库、分表逻辑。编写rangeAlgorithmClassName、preciseAlgorithmClassName、MyRangeDSShardingAlgorithm、MyPreciseDSShardingAlgorithm 类以及yml文件如下。

public class MyRangeTableShardingAlgorithm implements RangeShardingAlgorithm<Long> {
    /**
     *
     * @param availableTargetNames
     * @param shardingValue 包含逻辑表名、分片列和分片列的条件范围。
     * @return 返回目标结果。可以是多个。
     */
    @Override
    public Collection<String> doSharding(Collection<String> availableTargetNames, RangeShardingValue<Long> shardingValue) {
        //实现按照 Between 进行范围分片。
        //例如 select * from course where cid between 2000 and 3000;
        Long lowerEndpoint = shardingValue.getValueRange().lowerEndpoint();
        Long upperEndpoint = shardingValue.getValueRange().upperEndpoint();
     //实现course_$->{(3000 -2000 )%2+1} 分片策略
     return Arrays.asList(shardingValue.getLogicTableName()+"_1",shardingValue.getLogicTableName()+"_2");
  }
}
public class MyPreciseTableShardingAlgorithm implements PreciseShardingAlgorithm<Long> {

    /**
     * @param availableTargetNames 有效的数据源或表的名字。这里就对应配置文件中配置的数据源信息
     * @param shardingValue 包含 逻辑表名、分片列和分片列的值。
     * @return 返回目标结果
     */
    @Override
    public String doSharding(Collection<String> availableTargetNames, PreciseShardingValue<Long> shardingValue) {
        //实现按照 = 或 IN 进行精确分片。
        //例如 select * from course where cid = 1 or cid in (1,3,5)
        //实现course_$->{cid%2+1} 分表策略
        BigInteger shardingValueB = BigInteger.valueOf(shardingValue.getValue());
        BigInteger resB = (shardingValueB.mod(new BigInteger("2"))).add(new BigInteger("1"));
        String key =  shardingValue.getLogicTableName()+"_"+resB ;
        if(availableTargetNames.contains(key)){
            return key;
        }
        throw new UnsupportedOperationException(" route "+key+" is not supported. please check your config");
    }
}
public class MyRangeDSShardingAlgorithm implements RangeShardingAlgorithm<Long> {
    /**
     *
     * @param availableTargetNames
     * @param shardingValue 包含逻辑表名、分片列和分片列的条件范围。
     * @return 返回目标结果。可以是多个。
     */
    @Override
    public Collection<String> doSharding(Collection<String> availableTargetNames, RangeShardingValue<Long> shardingValue) {
        //实现按照 Between 进行范围分片。
        //例如 select * from course where cid between 2000 and 3000;
        Long lowerEndpoint = shardingValue.getValueRange().lowerEndpoint();
        Long upperEndpoint = shardingValue.getValueRange().upperEndpoint();
        //对于我们这个奇偶分离的场景,大部分范围查询都是要两张表都查。
        return availableTargetNames;
    }
}
public class MyPreciseDSShardingAlgorithm implements PreciseShardingAlgorithm<Long> {

    /**
     * @param availableTargetNames 有效的数据源或表的名字。这里就对应配置文件中配置的数据源信息
     * @param shardingValue 包含 逻辑表名、分片列和分片列的值。
     * @return 返回目标结果
     */
    @Override
    public String doSharding(Collection<String> availableTargetNames, PreciseShardingValue<Long> shardingValue) {
        //实现按照 = 或 IN 进行精确分片。
        //例如 select * from course where cid = 1 or cid in (1,3,5)
        // select * from course where userid- 'xxx';
        //实现course_$->{cid%2+1} 分表策略
        BigInteger shardingValueB = BigInteger.valueOf(shardingValue.getValue());
        BigInteger resB = (shardingValueB.mod(new BigInteger("2"))).add(new BigInteger("1"));
        String key =  "m"+resB ;
        if(availableTargetNames.contains(key)){
            return key;
        }
        throw new UnsupportedOperationException(" route "+key+" is not supported. please check your config");
    }
}
spring:
  shardingsphere:
    datasource:
      names: m1,m2
      m1:
        type: com.alibaba.druid.pool.DruidDataSource
        driver-class-name: com.mysql.cj.jdbc.Driver
        url: jdbc:mysql://rm-bp1347i6zmc5iozp59o.mysql.rds.aliyuncs.com:3306/shardingjdbc_1?characterEncoding=utf8&characterSetResults=utf8&autoReconnect=true&failOverReadOnly=false&useSSL=false&serverTimezone=GMT%2B8
        username: root
        password: txb@root
      m2:
        type: com.alibaba.druid.pool.DruidDataSource
        driver-class-name: com.mysql.cj.jdbc.Driver
        url: jdbc:mysql://rm-bp1347i6zmc5iozp59o.mysql.rds.aliyuncs.com:3306/shardingjdbc_2?characterEncoding=utf8&characterSetResults=utf8&autoReconnect=true&failOverReadOnly=false&useSSL=false&serverTimezone=GMT%2B8
        username: root
        password: 123456@txb
    sharding:
      tables:
        student:
          actualDataNodes: m$->{1..2}.student_$->{1..2}
          keyGenerator:
            column: id
            type: SNOWFLAKE
            props:
              worker-id: 1
          # 分库算法
          databaseStrategy:
            standard:
              shardingColumn: id
              rangeAlgorithmClassName: com.txb.algorithm.MyRangeDSShardingAlgorithm
              preciseAlgorithmClassName: com.txb.algorithm.MyPreciseDSShardingAlgorithm
          # 分表算法
          tableStrategy:
            standard:
              shardingColumn: id
              rangeAlgorithmClassName: com.txb.algorithm.MyRangeTableShardingAlgorithm
              preciseAlgorithmClassName: com.txb.algorithm.MyPreciseTableShardingAlgorithm
    # 打印sql语句
    props:
      sql:
        show: true

  2.3 complex分片算法的使用

  SQL 语句中有>>=<=<=IN 和 BETWEEN AND 等操作符,不同的是复合分片策略支持对多个分片健操作。下面我们实现同时以 order_iduser_id 两个字段作为分片健,自定义复合分片策略。编写MyComplexDSShardingAlgorithmMyComplexTableShardingAlgorithm类以及yml文件如下。

public class MyComplexDSShardingAlgorithm implements ComplexKeysShardingAlgorithm<Long> {
    @Override
    public Collection<String> doSharding(Collection<String> availableTargetNames, ComplexKeysShardingValue<Long> shardingValue) {
        Collection<Long> cidCol = shardingValue.getColumnNameAndShardingValuesMap().get("id");

        List<String> result = new ArrayList<>();
        //实现自定义分片逻辑 例如可以自己实现 course_$->{cid%2+1 + (30-20)+1} 这样的复杂分片逻辑
        for(Long cid : cidCol){
            BigInteger cidI = BigInteger.valueOf(cid);
            BigInteger target = (cidI.mod(BigInteger.valueOf(2L))).add(new BigInteger("1"));
            result.add("m"+target);
        }

        return result;
    }
}
public class MyComplexTableShardingAlgorithm implements ComplexKeysShardingAlgorithm<Long> {
    /**
     *
     * @param availableTargetNames 目标数据源 或者 表 的值。
     * @param shardingValue logicTableName逻辑表名 columnNameAndShardingValuesMap 分片列的精确值集合。 columnNameAndRangeValuesMap 分片列的范围值集合
     * @return
     */
    @Override
    public Collection<String> doSharding(Collection<String> availableTargetNames, ComplexKeysShardingValue<Long> shardingValue) {
        Collection<Long> cidCol = shardingValue.getColumnNameAndShardingValuesMap().get("id");
        List<String> result = new ArrayList<>();
        //实现自定义分片逻辑 例如可以自己实现 course_$->{cid%2+1 + (30-20)+1} 这样的复杂分片逻辑
        for(Long cid : cidCol){
            BigInteger cidI = BigInteger.valueOf(cid);
            BigInteger target = (cidI.mod(BigInteger.valueOf(2L))).add(new BigInteger("1"));
            result.add("student_"+target);
        }

        return result;
    }
}
spring:
  shardingsphere:
    datasource:
      names: m1,m2
      m1:
        type: com.alibaba.druid.pool.DruidDataSource
        driver-class-name: com.mysql.cj.jdbc.Driver
        url: jdbc:mysql://rm-bp1347i6zmc5iozp59o.mysql.rds.aliyuncs.com:3306/shardingjdbc_1?characterEncoding=utf8&characterSetResults=utf8&autoReconnect=true&failOverReadOnly=false&useSSL=false&serverTimezone=GMT%2B8
        username: root
        password: txb@root
      m2:
        type: com.alibaba.druid.pool.DruidDataSource
        driver-class-name: com.mysql.cj.jdbc.Driver
        url: jdbc:mysql://rm-bp1347i6zmc5iozp59o.mysql.rds.aliyuncs.com:3306/shardingjdbc_2?characterEncoding=utf8&characterSetResults=utf8&autoReconnect=true&failOverReadOnly=false&useSSL=false&serverTimezone=GMT%2B8
        username: root
        password: 123456@txb
    sharding:
      tables:
        student:
          actualDataNodes: m$->{1..2}.student_$->{1..2}
          keyGenerator:
            column: id
            type: SNOWFLAKE
            props:
              worker-id: 1
          # 分库算法
          databaseStrategy:
            complex:
              shardingColumns: id
              algorithmClassName: com.txb.algorithm.MyComplexDSShardingAlgorithm
          # 分表算法
          tableStrategy:
            complex:
              shardingColumns: id,name
              algorithmClassName: com.txb.algorithm.MyComplexTableShardingAlgorithm
    # 打印sql语句
    props:
      sql:
        show: true

2.4 hint分片算法的使用

  行表达式分片策略(InlineShardingStrategy),在配置中使用 Groovy 表达式,提供对 SQL语句中的 = 和 IN 的分片操作支持,它只支持单分片健。行表达式分片策略适用于做简单的分片算法,无需自定义分片算法,省去了繁琐的代码开发,是几种分片策略中最为简单的。编写MyHintDSShardingAlgorithm、MyHintTableShardingAlgorithm类以及yml文件如下。

public class MyHintDSShardingAlgorithm implements HintShardingAlgorithm<Integer> {
    /**
     *
     * @param availableTargetNames 可选 数据源 和 表 的名称
     * @param shardingValue
     * @return
     */
    @Override
    public Collection<String> doSharding(Collection<String> availableTargetNames, HintShardingValue<Integer> shardingValue) {
        // 对SQL的零侵入分片方案。shardingValue是通过HintManager.
        // 比如我们要实现将 select * from t_user where user_id in {1,2,3,4,5,.....}; 按照in的第一个值,全部路由到course_1表中。
        // 注意他使用时有非常多的限制。
        return Arrays.asList("m1","m2");
    }
}
public class MyHintTableShardingAlgorithm implements HintShardingAlgorithm<Integer> {
    /**
     *
     * @param availableTargetNames 可选 数据源 和 表 的名称
     * @param shardingValue
     * @return
     */
    @Override
    public Collection<String> doSharding(Collection<String> availableTargetNames, HintShardingValue<Integer> shardingValue) {
        // 对SQL的零侵入分片方案。shardingValue是通过HintManager.
        // 比如我们要实现将 select * from t_user where user_id in {1,2,3,4,5,.....}; 按照in的第一个值,全部路由到course_1表中。
        // 注意他使用时有非常多的限制。
        String key = "student_"+shardingValue.getValues().toArray()[0];
        if(availableTargetNames.contains(key)){
            return Arrays.asList(key);
        }
        throw new UnsupportedOperationException(" route "+key+" is not supported. please check your config");
    }
}
spring:
  shardingsphere:
    datasource:
      names: m1,m2
      m1:
        type: com.alibaba.druid.pool.DruidDataSource
        driver-class-name: com.mysql.cj.jdbc.Driver
        url: jdbc:mysql://rm-bp1347i6zmc5iozp59o.mysql.rds.aliyuncs.com:3306/shardingjdbc_1?characterEncoding=utf8&characterSetResults=utf8&autoReconnect=true&failOverReadOnly=false&useSSL=false&serverTimezone=GMT%2B8
        username: root
        password: 123456@txb
      m2:
        type: com.alibaba.druid.pool.DruidDataSource
        driver-class-name: com.mysql.cj.jdbc.Driver
        url: jdbc:mysql://rm-bp1347i6zmc5iozp59o.mysql.rds.aliyuncs.com:3306/shardingjdbc_2?characterEncoding=utf8&characterSetResults=utf8&autoReconnect=true&failOverReadOnly=false&useSSL=false&serverTimezone=GMT%2B8
        username: root
        password: txb@root
    sharding:
      tables:
        student:
          actualDataNodes: m$->{1..2}.student_$->{1..2}
          keyGenerator:
            column: id
            type: SNOWFLAKE
            props:
              worker-id: 1
          # 分库算法
          databaseStrategy:
            hint:
              shardingColumns: id
              algorithmClassName: com.txb.algorithm.MyHintDSShardingAlgorithm
          # 分表算法
          tableStrategy:
            hint:
              shardingColumns: id,name
              algorithmClassName: com.txb.algorithm.MyHintTableShardingAlgorithm
    # 打印sql语句
    props:
      sql:
        show: true

3. ShardingJDBC其他分片算法

3.1 broadcast-tables广播表策略

  在实际业务中有的表在不同的数据库中都需要,例如数据字典表dict,因此在dict表中需要都插入数据,此时便用到广播表策略,实际使用过程如下,我们在shardingjdbc_1数据库与shardingjdbc_2数据库中创建dict表。

CREATE TABLE `dict` (
  `id` bigint NOT NULL,
  `key_data` char(1) CHARACTER SET utf8 COLLATE utf8_general_ci DEFAULT NULL,
  `value_data` varchar(255) CHARACTER SET utf8 COLLATE utf8_general_ci DEFAULT NULL,
  PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb3;

创建字段表的实体类与mapper,再配置yml文件如下。

spring:
  shardingsphere:
    datasource:
      names: m1,m2
      m1:
        type: com.alibaba.druid.pool.DruidDataSource
        driver-class-name: com.mysql.cj.jdbc.Driver
        url: jdbc:mysql://rm-bp1347i6zmc5iozp59o.mysql.rds.aliyuncs.com:3306/shardingjdbc_1?characterEncoding=utf8&characterSetResults=utf8&autoReconnect=true&failOverReadOnly=false&useSSL=false&serverTimezone=GMT%2B8
        username: root
        password: 123456@txb
      m2:
        type: com.alibaba.druid.pool.DruidDataSource
        driver-class-name: com.mysql.cj.jdbc.Driver
        url: jdbc:mysql://rm-bp1347i6zmc5iozp59o.mysql.rds.aliyuncs.com:3306/shardingjdbc_2?characterEncoding=utf8&characterSetResults=utf8&autoReconnect=true&failOverReadOnly=false&useSSL=false&serverTimezone=GMT%2B8
        username: root
        password: 123456@txb
    sharding:
      tables:
        dict:
          actualDataNodes: m$->{1..2}.dict_$->{1..2}
          keyGenerator:
            column: id
            type: SNOWFLAKE
            props:
              worker-id: 1
      # 广播表
      broadcast-tables:
        - dict
    # 打印sql语句
    props:
      sql:
        show: true

这时,写一个测试类,插入两条数据,会发现两个库的两张表里面都有相同的数据,而且此时该表就算配上其他策略也不会生效。

    @Test
    public void dictInsert(){
        Dict dict1 = new Dict();
        dict1.setKeyData("1");
        dict1.setValueData("正常");
        dictMapper.insert(dict1);

        Dict dict2 = new Dict();
        dict2.setKeyData("2");
        dict2.setValueData("异常");
        dictMapper.insert(dict2);
    }

 3.2 binding-tables绑定表策略

  对于多表关联查询需要用到此策略,如果不使用此策略会出现冗余数据,下面进行举例说明,分别在shardingjdbc_1和shardingjdbc_2中添加表user_1和user_2,dict_1和dict_2。

CREATE TABLE `dict_1` (
  `id` bigint NOT NULL,
  `key_data` char(1) CHARACTER SET utf8 COLLATE utf8_general_ci DEFAULT NULL,
  `value_data` varchar(255) CHARACTER SET utf8 COLLATE utf8_general_ci DEFAULT NULL,
  `status` char(1) DEFAULT NULL,
  PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb3;


CREATE TABLE `user_1` (
  `id` bigint NOT NULL,
  `dict_id` bigint DEFAULT NULL,
  `name` varchar(255) DEFAULT NULL,
  `status` char(1) DEFAULT NULL,
  PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb3;

  先使用基本inline策略将一些数据插入表中。

spring:
  shardingsphere:
    datasource:
      names: m1,m2
      m1:
        type: com.alibaba.druid.pool.DruidDataSource
        driver-class-name: com.mysql.cj.jdbc.Driver
        url: jdbc:mysql://rm-bp1347i6zmc5iozp59o.mysql.rds.aliyuncs.com:3306/shardingjdbc_1?characterEncoding=utf8&characterSetResults=utf8&autoReconnect=true&failOverReadOnly=false&useSSL=false&serverTimezone=GMT%2B8
        username: root
        password: 123456@txb
      m2:
        type: com.alibaba.druid.pool.DruidDataSource
        driver-class-name: com.mysql.cj.jdbc.Driver
        url: jdbc:mysql://rm-bp1347i6zmc5iozp59o.mysql.rds.aliyuncs.com:3306/shardingjdbc_2?characterEncoding=utf8&characterSetResults=utf8&autoReconnect=true&failOverReadOnly=false&useSSL=false&serverTimezone=GMT%2B8
        username: root
        password: 123456@txb
    sharding:
      tables:
        dict:
          actualDataNodes: m$->{1..2}.dict_$->{1..2}
          keyGenerator:
            column: id
            type: SNOWFLAKE
            props:
              worker-id: 1
          databaseStrategy:
            inline:
              shardingColumn: status
              algorithmExpression: m$->{status}
          tableStrategy:
            inline:
              shardingColumn: status
              algorithmExpression: dict_$->{status}
        user:
          actualDataNodes: m$->{1..2}.user_$->{1..2}
          keyGenerator:
            column: id
            type: SNOWFLAKE
            props:
              worker-id: 1
          databaseStrategy:
            inline:
              shardingColumn: status
              algorithmExpression: m$->{status}
          tableStrategy:
            inline:
              shardingColumn: status
              algorithmExpression: user_$->{status}
    # 打印sql语句
    props:
      sql:
        show: true
    @Test
    public void dictInsert(){
        Dict dict1 = new Dict();
        dict1.setKeyData("1");
        dict1.setValueData("正常");
        dict1.setStatus("1");
        dictMapper.insert(dict1);

        Dict dict2 = new Dict();
        dict2.setKeyData("2");
        dict2.setValueData("异常");
        dict2.setStatus("2");
        dictMapper.insert(dict2);
    }

    @Test
    public void addUser(){
        for (int i = 0; i < 10; i++) {
            User user = new User();
            user.setName(i+ "");
            user.setStatus((i % 2 + 1) + "");
            userMapper.insert(user);
        }
    }

  插入成功后,我们进行以status为关联字段的连表查询

    @Select("select u.id,u.name,d.value_data status from user u left join dict d on d.status = u.status")
    public List<User> queryUser();

   会发现查询出的数据中有status为空的,这是因为这两张表做了笛卡尔积进行关联,接下来我们看下使用绑定表策略之后的结果。

    sharding:
      binding-tables:
        - user,dict

   由此可见,使用绑定表策略之后,真正做到了分表后的关联查询。

3.3 master-slave-rules读写分离策略

  shardingjdbc提供了业务上的读写分离策略,即写入使用主表,读取使用从表,具体配置如下。

spring:
  shardingsphere:
    datasource:
      names: m1,m2
      m1:
        type: com.alibaba.druid.pool.DruidDataSource
        driver-class-name: com.mysql.cj.jdbc.Driver
        url: jdbc:mysql://rm-bp1347i6zmc5iozp59o.mysql.rds.aliyuncs.com:3306/shardingjdbc_1?characterEncoding=utf8&characterSetResults=utf8&autoReconnect=true&failOverReadOnly=false&useSSL=false&serverTimezone=GMT%2B8
        username: root
        password: 123456@txb
      m2:
        type: com.alibaba.druid.pool.DruidDataSource
        driver-class-name: com.mysql.cj.jdbc.Driver
        url: jdbc:mysql://rm-bp1347i6zmc5iozp59o.mysql.rds.aliyuncs.com:3306/shardingjdbc_2?characterEncoding=utf8&characterSetResults=utf8&autoReconnect=true&failOverReadOnly=false&useSSL=false&serverTimezone=GMT%2B8
        username: root
        password: 123456@txb
    sharding:
      # 主从配置
      master-slave-rules:
        ds0:
          masterDataSourceName: m1
          slaveDataSourceNames:
            - m2
      tables:
        dict:
          actualDataNodes: ds0.dict
          keyGenerator:
            column: id
            type: SNOWFLAKE
            props:
              worker-id: 1
    # 打印sql语句
    props:
      sql:
        show: true

  此时,使用插入语句会发现实际执行的表均为dict_1,而使用查询语句实际执行的表均为dict_2。需要注意的是真正意义上的读写分离需要mysql自己的主从机制来实现,shardingjdbc只做sql语句的转发者。

posted @ 2022-04-27 11:14  檀潇兵  阅读(1761)  评论(0编辑  收藏  举报