《算法导论》学习总结 — 15. 第13章 红黑树(4)
建议先看看前言:http://www.cnblogs.com/tanky_woo/archive/2011/04/09/2010263.html
这一章把前面三篇的代码总结起来,然后推荐一些网上红黑树的优秀讲解资源。
代码:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 |
/* * Author: Tanky Woo * Blog: www.WuTianQi.com * Description: 《算法导论》第13章 Red Black Tree */ #include <iostream> //#define NULL 0 using namespace std; const int RED = 0; const int BLACK = 1; // ① typedef struct Node{ int color; int key; Node *lchild, *rchild, *parent; }Node, *RBTree; static Node NIL = {BLACK, 0, 0, 0, 0}; #define NULL (&NIL) // ② Node * RBTreeSearch(RBTree T, int k) { if(T == NULL || k == T->key) return T; if(k < T->key) return RBTreeSearch(T->lchild, k); else return RBTreeSearch(T->rchild, k); } /* BSNode * IterativeRBTreeSearch(RBTree T, int k) { while(T != NULL && k != T->key) { if(k < T->lchild->key); x = T->lchild; else x = T->rchild; } return x; } */ // ③ Node * RBTreeMinimum(RBTree T) { while(T->lchild != NULL) T = T->lchild; return T; } Node * RBTreeMaximum(RBTree T) { while(T->rchild != NULL) T = T->rchild; return T; } // ④ Node *RBTreeSuccessor(Node *x) { if(x->rchild != NULL) return RBTreeMinimum(x->rchild); Node *y = x->parent; while(y != NULL && x == y->rchild) { x = y; y = y->parent; } return y; } void LeftRotate(RBTree &T, Node *x) { Node *y = x->rchild; x->rchild = y->lchild; if(y->lchild != NULL) y->lchild->parent = x; y->parent = x->parent; if(x->parent == NULL) T = y; else { if(x == x->parent->lchild) x->parent->lchild = y; else x->parent->rchild = y; } y->lchild = x; x->parent = y; } void RightRotate(RBTree &T, Node *x) { Node *y = x->rchild; x->rchild = y->lchild; if(y->lchild != NULL) y->lchild->parent = x; y->parent = x->parent; if(x->parent == NULL) T = y; else { if(x == x->parent->lchild) x->parent->lchild = y; else x->parent->rchild = y; } y->lchild = x; x->parent = y; } // ⑤ void RBInsertFixup(RBTree &T, Node *z) { while(z->parent->color == RED) { if(z->parent == z->parent->parent->lchild) { Node *y = z->parent->parent->rchild; //////////// Case1 ////////////// if(y->color == RED) { z->parent->color = BLACK; y->color = BLACK; z->parent->parent->color = RED; z = z->parent->parent; } else { ////////////// Case 2 ////////////// if(z == z->parent->rchild) { z = z->parent; LeftRotate(T, z); } ////////////// Case 3 ////////////// z->parent->color = BLACK; z->parent->parent->color = RED; RightRotate(T, z->parent->parent); } } else { Node *y = z->parent->parent->lchild; if(y->color == RED) { z->parent->color = BLACK; y->color = BLACK; z->parent->parent->color = RED; z = z->parent->parent; } else { if(z == z->parent->lchild) { z = z->parent; RightRotate(T, z); } z->parent->color = BLACK; z->parent->parent->color = RED; LeftRotate(T, z->parent->parent); } } } T->color = BLACK; } void RBTreeInsert(RBTree &T, int k) { //T->parent->color = BLACK; Node *y = NULL; Node *x = T; Node *z = new Node; z->key = k; z->lchild = z->parent = z->rchild = NULL; while(x != NULL) { y = x; if(k < x->key) x = x->lchild; else x = x->rchild; } z->parent = y; if(y == NULL) { T = z; T->parent = NULL; T->parent->color = BLACK; } else if(k < y->key) y->lchild = z; else y->rchild = z; z->lchild = NULL; z->rchild = NULL; z->color = RED; RBInsertFixup(T, z); } // ⑤ void RBDeleteFixup(RBTree &T, Node *x) { while(x != T && x->color == BLACK) { if(x == x->parent->lchild) { Node *w = x->parent->rchild; ///////////// Case 1 ///////////// if(w->color == RED) { w->color = BLACK; x->parent->color = RED; LeftRotate(T, x->parent); w = x->parent->rchild; } ///////////// Case 2 ///////////// if(w->lchild->color == BLACK && w->rchild->color == BLACK) { w->color = RED; x = x->parent; } else { ///////////// Case 3 ///////////// if(w->rchild->color == BLACK) { w->lchild->color = BLACK; w->color = RED; RightRotate(T, w); w = x->parent->rchild; } ///////////// Case 4 ///////////// w->color = x->parent->color; x->parent->color = BLACK; w->rchild->color = BLACK; LeftRotate(T, x->parent); x = T; } } else { Node *w = x->parent->lchild; if(w->color == RED) { w->color = BLACK; x->parent->color = RED; RightRotate(T, x->parent); w = x->parent->lchild; } if(w->lchild->color == BLACK && w->rchild->color == BLACK) { w->color = RED; x = x->parent; } else { if(w->lchild->color == BLACK) { w->rchild->color = BLACK; w->color = RED; LeftRotate(T, w); w = x->parent->lchild; } w->color = x->parent->color; x->parent->color = BLACK; w->lchild->color = BLACK; RightRotate(T, x->parent); x = T; } } } x->color = BLACK; } Node* RBTreeDelete(RBTree T, Node *z) { Node *x, *y; // z是要删除的节点,而y是要替换z的节点 if(z->lchild == NULL || z->rchild == NULL) y = z; // 当要删除的z至多有一个子树,则y=z; else y = RBTreeSuccessor(z); // y是z的后继 if(y->lchild != NULL) x = y->lchild; else x = y->rchild; // 无条件执行p[x] = p[y] x->parent = y->parent; //如果y至多只有一个子树,则使y的子树成为y的父亲节点的子树 if(y->parent == NULL) // 如果y没有父亲节点,则表示y是根节点,词典其子树x为根节点 T = x; else if(y == y->parent->lchild) // 如果y是其父亲节点的左子树,则y的子树x成为其父亲节点的左子树, // 否则成为右子树 y->parent->lchild = x; else y->parent->rchild = x; if(y != z) z->key = y->key; if(y->color == BLACK) RBDeleteFixup(T, x); return y; } void InRBTree(RBTree T) { if(T != NULL) { InRBTree(T->lchild); cout << T->key << " "; InRBTree(T->rchild); } } void PrintRBTree(RBTree T) { if(T != NULL) { PrintRBTree(T->lchild); cout << T->key << ": "; // 自身的颜色 if(T->color == 0) cout << " Color: RED "; else cout << " Color: BLACK "; // 父亲结点的颜色 if(T == NULL) cout << " Parent: BLACK "; else { if(T->color == 0) cout << " Parent: RED "; else cout << " Parent: BLACK "; } // 左儿子结点的颜色 if(T->lchild == NULL) cout << " Lchild: BLACK "; else { if(T->lchild->color == 0) cout << " Lchild: RED "; else cout << " Lchild: BLACK "; } // 右儿子结点的颜色 if(T->rchild == NULL) cout << " Rchild: BLACK "; else { if(T->rchild->color == 0) cout << " Rchild: RED "; else cout << " Rchild: BLACK "; } cout << endl; PrintRBTree(T->rchild); } } int main() { int m; RBTree T = NULL; for(int i=0; i<9; ++i) { cin >> m; RBTreeInsert(T, m); cout << "在红黑树中序查找:"; InRBTree(T); cout << endl; } PrintRBTree(T); cout << "删除根节点后:"; RBTreeDelete(T, T); InRBTree(T); } |
截图如图:
如图显示,这里用到了书上图13-4.可以看到,结点1, 5, 7, 8, 14是黑结点.和图13-4显示一样.
另外,我在学习红黑树的过程中,在网上发现了几个不错的资料,这里给大家推荐下:
天枰座的唐风朋友的:
http://liyiwen.iteye.com/blog/345800
http://liyiwen.iteye.com/blog/345799
wangdei的红黑树算法,附AVL树的比较:
http://wangdei.iteye.com/blog/236157
July的红黑树算法层层剖析与逐步实现:
感谢上面的朋友写的这么好的分析文章。
在我独立博客上的原文:http://www.wutianqi.com/?p=2473
欢迎大家互相学习,互相进步!
posted on 2011-05-12 16:35 Tanky Woo 阅读(2636) 评论(2) 编辑 收藏 举报